526 research outputs found

    Experimental Evidence of Generation and Reception by a Transluminal Axisymmetric Shear Wave Elastography Prototype

    Get PDF
    Experimental evidence on testing a non-ultrasonic-based probe for a new approach in transluminal elastography was presented. The proposed modality generated shear waves by inducing oscillatory rotation on the lumen wall. Detection of the propagated waves was achieved at a set of receivers in mechanical contact with the lumen wall. The excitation element of the probe was an electromagnetic rotational actuator whilst the sensing element was comprised by a uniform anglewise arrangement of four piezoelectric receivers. The prototype was tested in two soft-tissue-mimicking phantoms that contained lumenlike conduits and stiffer inclusions. The shear wave speed of the different components of the phantoms was characterized using shear wave elastography. These values were used to estimate the time-of-flight of the expected reflections. Ultrafast ultrasound imaging, based on Loupas' algorithm, was used to estimate the displacement field in transversal planes to the lumenlike conduit and to compare against the readouts from the transluminal transmission-reception tests. Experimental observations between ultrafast imaging and the transluminal probe were in good agreement, and reflections due to the stiffer inclusions were detected by the transluminal probe. The obtained experimental evidence provided proof-of-concept for the transluminal elastography probe and encouraged further exploration of clinical applications

    Intelligent Advanced User Interfaces for Monitoring Mental Health Wellbeing

    Get PDF
    It has become pressing to develop objective and automatic measurements integrated in intelligent diagnostic tools for detecting and monitoring depressive states and enabling an increased precision of diagnoses and clinical decision-makings. The challenge is to exploit behavioral and physiological biomarkers and develop Artificial Intelligent (AI) models able to extract information from a complex combination of signals considered key symptoms. The proposed AI models should be able to help clinicians to rapidly formulate accurate diagnoses and suggest personalized intervention plans ranging from coaching activities (exploiting for example serious games), support networks (via chats, or social networks), and alerts to caregivers, doctors, and care control centers, reducing the considerable burden on national health care institutions in terms of medical, and social costs associated to depression cares

    A synthetic-lethality RNAi screen reveals an ERK-mTOR co-targeting pro-apoptotic switch in PIK3CA+ oral cancers.

    Get PDF
    mTOR inhibition has emerged as a promising strategy for head and neck squamous cell carcinomas (HNSCC) treatment. However, most targeted therapies ultimately develop resistance due to the activation of adaptive survival signaling mechanisms limiting the activity of targeted agents. Thus, co-targeting key adaptive mechanisms may enable more effective cancer cell killing. Here, we performed a synthetic lethality screen using shRNA libraries to identify druggable candidates for combinatorial signal inhibition. We found that the ERK pathway was the most highly represented. Combination of rapamycin with trametinib, a MEK1/2 inhibitor, demonstrated strong synergism in HNSCC-derived cells in vitro and in vivo, including HNSCC cells expressing the HRAS and PIK3CA oncogenes. Interestingly, cleaved caspase-3 was potently induced by the combination therapy in PIK3CA+ cells in vitro and tumor xenografts. Moreover, ectopic expression of PIK3CA mutations into PIK3CA- HNSCC cells sensitized them to the pro-apoptotic activity of the combination therapy. These findings indicate that co-targeting the mTOR/ERK pathways may provide a suitable precision strategy for HNSCC treatment. Moreover, PIK3CA+ HNSCC are particularly prone to undergo apoptosis after mTOR and ERK inhibition, thereby providing a potential biomarker of predictive value for the selection of patients that may benefit from this combination therapy

    Characterization of non‑linear mechanical behavior of the cornea

    Get PDF
    The objective of this study was to evaluate which hyperelastic model could best describe the nonlinear mechanical behavior of the cornea, in order to characterize the capability of the non-linear model parameters to discriminate structural changes in a damaged cornea. Porcine corneas were used, establishing two diferent groups: control (non-treated) and NaOH-treated (damaged) corneas (n= 8). NaOH causes a chemical burn to the corneal tissue, simulating a disease associated to structural damage of the stromal layer. Quasi-static uniaxial tensile tests were performed in nasaltemporal direction immediately after preparing corneal strips from the two groups. Three non-linear hyperelastic models (i.e. Hamilton-Zabolotskaya model, Ogden model and Mooney-Rivlin model) were ftted to the stress–strain curves obtained in the tensile tests and statistically compared. The corneas from the two groups showed a non-linear mechanical behavior that was best described by the Hamilton-Zabolotskaya model, obtaining the highest coefcient of determination (R2 > 0.95). Moreover, Hamilton-Zabolotskaya model showed the highest discriminative capability of the nonlinear model parameter (Parameter A) for the tissue structural changes between the two sample groups (p= 0.0005). The present work determines the best hyperelastic model with the highest discriminative capability in description of the non-linear mechanical behavior of the cornea.Ministry of Education DPI2017-83859-R DPI2014-51870-R EQC2018004508-P UNGR15-CE-3664Ministry of Health - Turkey DTS15/00093Junta de Andalucia PI16/00339 PI-0107-2017 PIN-0030-201

    The use of RAPD markers to detect genetic patterns in Aleurodicus dispersus (Hemiptera : Aleyrodidae) populations from the Canary Islands

    Get PDF
    Aleurodicus dispersus Russell (Hemiptera: Aleyrodidae), a highly polyphagous species, has since the 90’s been an important pest of ornamentals and tropical crops in the Canary Islands. In this study the RAPD-PCR technique was used to study the genetic structure of this whitefly in this archipelago. A total of 68 different bands were scored in seven populations using six primers for amplification. No differences in RAPD patterns were found among populations from different islands of the Canaries. These findings indicate a very high genetic similarity among populations and low level of genetic variability and support a single colonization event by few A. dispersus whiteflies and recent dispersion throughout the archipelago

    A novel phosphatidylinositol 3-kinase (PI3K) inhibitor directs a potent FOXO-dependent, p53-independent cell cycle arrest phenotype characterized by the differential induction of a subset of FOXO-regulated genes.

    Get PDF
    INTRODUCTION: The activation of the phosphoinositide 3-kinase (PI3K)/AKT signalling pathway is one the most frequent genetic events in breast cancer, consequently the development of PI3K inhibitors has attracted much attention. Here we evaluate the effect of PI3K inhibition on global gene expression in breast cancer cells. METHODS: We used a range of methodologies that include in silico compound analysis, in vitro kinase assays, cell invasion assays, proliferation assays, genome-wide transcription studies (Agilent Technologies full genome arrays), gene set enrichment analysis, quantitative real-time PCR, immunoblotting in addition to chromatin immunoprecipitation. RESULTS: We defined the physico-chemical and the biological properties of ETP-45658, a novel potent PI3K inhibitor. We demonstrated that ETP-45658 potently inhibited cell proliferation within a broad range of human cancer cells, most potently suppressing the growth of breast cancer cells via inhibiting cell cycle. We show that this response is Forkhead box O (FOXO) protein dependent and p53 independent. Our genome-wide microarray analysis revealed that the cell cycle was the most affected biological process after exposure to ETP-45658 (or our control PI3K inhibitor PI-103), that despite the multiple transcription factors that are regulated by the PI3K/AKT signalling cascade, only the binding sites for FOXO transcription factors were significantly enriched and only a subset of all FOXO-dependent genes were induced. This disparity in gene transcription was not due to differential FOXO promoter recruitment. CONCLUSIONS: The constitutive activation of PI3Ks and thus the exclusion of FOXO transcription factors from the nucleus is a key feature of breast cancer. Our results presented here highlight that PI3K inhibition activates specific FOXO-dependent genes that mediate cell cycle arrest in breast cancer cells

    Epidermal Loss of Gag Confers a Migratory and Differentiation Defect in Keratinocytes

    Get PDF
    G-protein coupled receptors (GPCRs), which activate heterotrimeric G proteins, are an essential class of transmembrane receptors that are responsible for a myriad of signaling events in normal and pathologic conditions. Two members of the G protein family, Gaq and Ga-11, activate one of the main GPCR pathways and function as oncogenes by integrating mitogen-stimulated signaling cascades that are active under malignant conditions. Recently, it has been shown that targeted deletion of Ga-11 and Gaq from endothelial cells impairs the Rho -mediated formation of focal adherens junctions, suggesting that Gai vg signaling may also play a significant role in cytoskeletal-mediated cellular responses in epithelial cells. Indeed, combined deletion of Ga-11 and Gaq confers a significant migratory defect in keratinocytes that delays cutaneous wound healing in an in vivo setting. This delay can be attributed to a defect during the reepithelialization phase due to significantly attenuated migratory capacity of Gaq-null keratinocytes under combined Ga-11 deficiency. In fact, cells lacking Gaivg demonstrate a severely reduced ability to respond to mitogenic and migratory signals in the microenvironment, leading to inappropriate and premature terminal differentiation. These results suggest that Gaivg signaling pathways may be critical for integrating mitogenic signals and cytoskeletal function to achieve normal physiological responses. Emergence of a malignant phenotype may therefore arise from both under- and overexpression of Gai vg signaling, implicating its upstream regulation as a potential therapeutic target in a host of pathologic conditions
    corecore