55 research outputs found

    Branching Systems and Spatial Fragmentations

    Get PDF

    Survival and complete convergence for a branching annihilating random walk

    Full text link
    We study a discrete-time branching annihilating random walk (BARW) on the dd-dimensional lattice. Each particle produces a Poissonian number of offspring with mean μ\mu which independently move to a uniformly chosen site within a fixed distance RR from their parent's position. Whenever a site is occupied by at least two particles, all the particles at that site are annihilated. We prove that for any μ>1\mu>1 the process survives when RR is sufficiently large. For fixed RR we show that the process dies out if μ\mu is too small or too large. Furthermore, we exhibit an interval of μ\mu-values for which the process survives and possesses a unique non-trivial ergodic equilibrium for RR sufficiently large. We also prove complete convergence for that case

    A quantum model for rf-SQUIDs based metamaterials enabling 3WM and 4WM Travelling Wave Parametric Amplification

    Get PDF
    A quantum model for Josephson-based metamaterials working in the Three-Wave Mixing (3WM) and Four-Wave Mixing (4WM) regimes at the single-photon level is presented. The transmission line taken into account, namely Traveling Wave Josephson Parametric Amplifier (TWJPA), is a bipole composed by a chain of rf-SQUIDs which can be biased by a DC current or a magnetic field in order to activate the 3WM or 4WM nonlinearities. The model exploits a Hamiltonian approach to analytically determine the time evolution of the system both in the Heisenberg and interaction pictures. The former returns the analytic form of the gain of the amplifier, while the latter allows recovering the probability distributions vs. time of the photonic populations, for multimodal Fock and coherent input states. The dependence of the metamaterial's nonlinearities is presented in terms of circuit parameters in a lumped model framework while evaluating the effects of the experimental conditions on the model validity

    Survival and complete convergence for a branching annihilating random walk

    Get PDF
    We study a discrete-time branching annihilating random walk (BARW) on the dd-dimensional lattice. Each particle produces a Poissonian number of offspring with mean μ\mu which independently move to a uniformly chosen site within a fixed distance RR from their parent's position. Whenever a site is occupied by at least two particles, all the particles at that site are annihilated. We prove that for any μ>1\mu>1 the process survives when RR is sufficiently large. For fixed RR we show that the process dies out if μ\mu is too small or too large. Furthermore, we exhibit an interval of μ\mu-values for which the process survives and possesses a unique non-trivial ergodic equilibrium for RR sufficiently large. We also prove complete convergence for that case

    Asynchronous responses of aquatic ecosystems to hydroclimatic forcing on the Tibetan Plateau

    Get PDF
    High-altitude ecosystems react sensitively to hydroclimatic triggers. Here we evaluated the ecological and hydrological changes in a glacier-influenced lake (Hala Hu, China) since the last glacial. Rapid fluctuations of aquatic biomarker concentrations, ratios, and hydrogen isotope values, from 15 to 14,000 and 8 to 5000 years before present, provided evidence for aquatic regime shifts and changes in lake hydrology. In contrast, most negative hydrogen isotope values of terrestrial biomarkers were observed between 9 and 7,000 years before present. This shows that shifts of vapour sources and increased precipitation amounts were not relevant drivers behind ecosystem changes in the studied lake. Instead, receding glaciers and increased meltwater discharge, driven by higher temperatures, caused the pronounced ecological responses. The shifts within phytoplankton communities in the Late Glacial and mid Holocene illustrate the vulnerability of comparable ecosystems to climatic and hydrological changes. This is relevant to assess future ecological responses to global warming

    Multi-biomarker analysis of sediments for paleoclimate research

    Get PDF
    Lacustrine sedimentary cores provide continuous records of large-scale and local environmental modifications, intelligible thanks to specific organic markers that accumulated in these archives during past millennia. In order to improve our knowledge on ecosystem changes due to biomass burning events and human presence during the Holocene, an effective analytical method to detect organic compounds contained in sediment samples is needed. We used Accelerated Solvent Extraction (ASE) technique followed by analysis with gas and liquid chromatographers coupled with mass spectrometers (GC-MS, IC-MS). The extraction of the molecules of interest from the sediments is made with a mixture of DCM:MeOH 9:1 v/v and it is followed by a 3 steps purification with silica gel columns. The first fraction is eluted with HEX:DCM 9:1 v/v and contains n-alkanes, indicators of vegetation, and polycyclic aromatic hydrocarbons (PAHs) as combustion proxies. Then, a second fraction is eluted with DCM and derivatized with the silylation process, in order to get the faecal sterols and stanols (FeSts), indicators of past human and grazing animals presence. These two fractions are analysed with the GC-MS technique. The third and last fraction is eluted with MeOH and contains the monosaccharide anhydrides (MAs), specific indicators of vegetation burning processes, which are analysed with IC-MS. Internal standards labelled C13 are used for the quantification and procedural blanks are extracted every batch of 12 samples. The method may undergo variations, on the basis of the complex sediment matrices which not always lend itself to the same kind of treatment. However, the technique was applied in different lakes from different continents and the obtained results, compared with historical and climate literature data, seem to demonstrate the potentiality of the method as a resourceful instrument to reconstruct past burning events and human-ecosystem interactions

    Fire, vegetation and Holocene climate in the south-eastern Tibetan Plateau: a multi-biomarker reconstruction from Paru Co

    Get PDF
    The fire history of the Tibetan Plateau over centennial to millennial timescales is still unknown. Recent ice core studies reconstruct fire history over the past few decades but do not extend through the Holocene. Lacustrine sedimentary cores, however, provide continuous records of large-scale and local environmental modifications due to their accumulation of specific organic molecular markers throughout the past millennia. In order to reconstruct Holocene fire events and vegetation changes occurring on the south-eastern Tibetan Plateau and the surrounding areas, we improved and integrated previous analytical methods. The multi-proxy procedure was applied to samples retrieved from Paru Co, a small lake located in the Nyainqentanglha Mountains (29°47'45.6"N; 92°21'07.2"E; 4845m a.s.l.). The investigated biomarkers include n-alkanes as indicators of vegetation, polycyclic aromatic hydrocarbons (PAHs) as combustion proxies, faecal sterols and stanols (FeSts) as indicators of the presence of humans or grazing animals and finally monosaccharide anhydrides (MAs) as specific markers of vegetation burning processes. Relatively high concentrations of both MAs and PAHs demonstrate intense local biomass burning activity during the early Holocene (10.9–10.7calky BP), which correspond to a drier climate following deglaciation. High concentrations of MAs but not PAHs between 10.7–9calky BP suggest a period of regional biomass burning followed by a decreasing fire trend through the mid-late Holocene. This fire history is consistent with local vegetation changes reconstructed from both n-alkanes and regional pollen records, where vegetation types depend on the centennial-scale intensity of monsoon precipitation. FeSts were below detection limits for most of the samples, suggesting limited direct human influences on fire regime and vegetation changes in the lake's catchment. Climate is the main influence on fire activity recorded in Paru Co over millennial timescales, where biomass burning fluctuates in response to alternating warm/humid and cool/dry periods

    The seasonal change of PAHs in Svalbard surface snow

    Get PDF
    The Arctic region is threatened by contamination deriving from both long-range pollution and local human activities. Polycyclic Aromatic Hydrocarbons (PAHs) are environmental tracers of emission, transport and deposition processes. A first campaign has been conducted at Ny-Ålesund, Svalbard, from October 2018 to May 2019, monitoring weekly concentrations of PAHs in Arctic surface snow. The trend of the 16 high priority PAH compounds showed that long-range inputs occurred mainly in the winter, with concentrations ranging from 0.8 ng L−1 to 37 ng L−1. In contrast to this, the most abundant analyte retene, showed an opposite seasonal trend with highest values in autumn and late spring (up to 97 ng L−1), while in winter this compound remained below 3 ng L−1. This is most likely due to local contributions from outcropping coal deposits and stockpiles. Our results show a general agreement with the atmospheric signal, although significant skews can be attributed to post-depositional processes, wind erosion, melting episodes and redistribution
    • …
    corecore