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Summary

The largest part of this thesis is concerned with the study of a fragmentation process

in which rectangles break up into progressively smaller pieces at rates that depend on

their shape. Long, thin rectangles are more likely to break quickly, and are also more

likely to split along their longest side.

We are interested in the evolution of the system at large times: how many fragments

are there of different shapes and sizes, and how did they reach that state? We give

an almost sure growth rate along paths by studying an equivalent branching random

walk. Our analysis is highly technical due to the spatial dependence of the rates and

the fact that we work under weaker assumptions than the usual large deviations regime

for random walks.

In the second part of the thesis we focus on a different, but related problem: esti-

mating the probability that the paths of a random walk stay close to a given function.

We prove a small deviation result about the unscaled paths of either a compound

Poisson process, or a random walk in discrete time.

Our proof strategy involves a Brownian motion approximation on smaller time

intervals, which allows us to take advantage of the sharpest estimates currently available

on the probability that a Brownian motion lies in a tube about a given function.
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Chapter 1

Introduction

The main object of study of this thesis is a spatially-dependent fragmentation process,

which involves rectangles breaking up into progressively smaller pieces at rates that

depend on their shape.

A fragmentation process describes the breaking up of a structure into pieces, and

occurs naturally in many situations. Mathematically, fragmentation processes have

been a subject of active research in probability for at least 20 years, incorporating

several varieties, including homogeneous fragmentations [8], self-similar fragmentations

[9], and growth fragmentations [12]. The textbook of Bertoin [10] gives an excellent

introduction to this rich mathematical theory. It begins by listing some real-world

examples of phenomena that might be considered fragmentation processes, including

“stellar fragments in astrophysics, fractures and earthquakes in geophysics, breaking

of crystals in crystallography, degradation of large polymer chains in chemistry, DNA

fragmentation in biology, fission of atoms in nuclear physics, fragmentation of a hard

drive in computer science,” and particularly valid from a mathematical point of view,

“evolution of blocks of mineral in a crusher.”

However, the traditional mathematical definition of a fragmentation process insists

that each fragment can be characterized by a real number that should be thought of

as its size. This stops us from considering the spatial position of a fragment or further

geometrical properties like its shape. In [11], Bertoin does analyse a multitype model

where the rates at which the fragments break can depend on one of finitely many types,

but this is somewhat restrictive because in applications there is often a continuum of

possible shapes.

We consider a spatially-dependent fragmentation process defined as follows. Begin

with a square of side length 1. After a random time, the square breaks into two rect-

angular pieces, uniformly at random. Each of these pieces then repeats this behaviour

independently, except that long, thin rectangles break more quickly, and are more likely

to break along their longest side.

One of the reasons for having rates depending on the shapes of the fragments is

building a more realistic model for a physical crushing process, for example, where

long, thin pieces of rock are likely to break more easily than more evenly-proportioned

pieces. See Figure 1-1.

Figure 1-1: We begin with a square, which splits vertically into two rectangles. One of these
then splits horizontally, and the process continues. Thinner rectangles are more likely to split
first.

We work in two dimensions to keep notation manageable, but our proofs should

work in three or more dimensions with little additional work. For the same reason, we

make a particular choice for the splitting rule—that is, the functions that decide how

a fragment’s shape affects its branching rate and the direction in which it breaks—but
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our methods should be adaptable to a variety of spatially-dependent fragmentation

models. We propose this model as a proof of concept that spatial fragmentations (with

uncountably many types) can be analysed mathematically.

We work in continuous time and begin with a square of side-length 1. At any

time, each rectangle of base b and height h independently splits at rate r(b, h) into two

smaller rectangles. The probability that it splits vertically is p(b, h), and if so then it

splits at a uniform point along its base; otherwise it splits horizontally at a uniform

point along its height. The functions r and p are given by

r(b, h) =
( 1− log b

1− log h

)
∨
(1− log h

1− log b

)
and

p(b, h) =
1− log h

2(1− log b)
1b≤h +

(
1− 1− log b

2(1− log h)

)
1b>h.

It is easy to see that rectangles with either large base relative to their height, or large

height relative to their base, split faster, and are more likely to split along their longer

side. The appearance of 1− log b and 1− log h, rather than b and h, is because splitting

events have a multiplicative effect: the distribution of the ratio of each rectangle’s

measurements to its parent’s is invariant. Thus the logarithm of the measurements

behaves additively, which ensures that the functions r and p remain non-trivial when

we rescale space and time. On the other hand, our choices of r and p are not the only

choices with this property, and our methods appear to be fairly robust: it should be

possible to adapt them to other sensible splitting rules.

Our main theorem, which we prove in Chapter 3, aims to quantify how many

fragments of a given shape there are in a configuration of splitting rectangles at large

times and the shape pattern they followed to reach their final base and height. In the

next sections we discuss how fragmentation processes can be translated into branching

random walks. Finding how many rectangles have a given shape pattern corresponds

to determining how many particles in the branching random walk have paths which,

when rescaled appropriately, fall within a given set of functions.

1.1. Fragmentations and branching random walks

A key observation in the classical study of mathematical fragmentations is that they

satisfy the branching property, in that the future evolution of one fragment, given its

current state, does not depend on the other fragments. This enables us to use branching

tools in the analysis of fragmentation processes: for example, if we consider the negative

logarithm of the sizes of the fragments of a homogeneous fragmentation, then we obtain

a continuous-time branching random walk. Bertoin’s multitype fragmentation in [11],

where the splitting rate can depend on one parameter (varying in a finite set), under

the same logarithmic transformation, becomes a multitype branching random walk.

1.1.1 Shape-dependent rates give spatially-dependent walks

Under a logarithmic transformation, the fragmentation process with shape-dependent

rates that we defined can also be translated into the language of branching processes.

More precisely, for a rectangle v, we denote its base by Bv and its height by Hv. We

let Xv = − logBv and Yv = − logHv. As suggested from the definitions of r(b, h) and

p(b, h), Xv and Yv are more useful parameterisations of size than Bv and Hv from a

mathematical point of view, simply because rectangles’ sizes will decay exponentially

2



with time. Under this transformation, our fragmentation system has the following

alternative description.

Begin with one particle at (0, 0) ∈ R2. Each particle, when at position (x, y) with

x, y ≥ 0, branches at rate

R(x, y) =
x+ 1

y + 1
∨ y + 1

x+ 1
. (1.1)

At a branching event, the particle is replaced by two children: letting U be a uniform

random variable on (0, 1), independent of everything else, then with probability

P (x, y) =
y + 1

2(x+ 1)
1x≥y +

(
1− x+ 1

2(y + 1)

)
1x<y

the two children have positions (x−logU , y) and (x−log(1−U), y), and with probability

1− P (x, y) they have positions (x, y − logU) and (x, y − log(1− U)).

We let RX(x, y) = R(x, y)P (x, y) and RY (x, y) = R(x, y)(1 − P (x, y)). Then RX
and RY denote the rates at which a particle at position (x, y) moves in the first spatial

dimension, or the second, respectively.

Throughout the thesis, we mostly use the second description, and refer to particles

and their positions, rather than rectangles and their sizes. As seen above, the two

descriptions are entirely equivalent.

It is clear that the process we defined cannot be analysed with standard tools. Under

a negative logarithmic transformation, our system of fragmenting rectangles can also

be thought of as a multitype branching random walk, but one with uncountably many

types (the type being the ratio x/y). Analysing branching systems with uncountably

many types is notoriously difficult. Even multitype Galton-Watson processes with

countably many types are beyond the scope of standard tools, hence the restriction to

finitely many types in most papers on multitype branching systems, including [11]. Our

model includes not just a continuum of types, but a two-dimensional set of possibilities.

This makes our mathematical analysis highly technical. We decided to include

Chapter 2 as an intermediate step leading to the long proof that appears in Chapter

3: we discuss the most challenging aspects along the path to determine the growth

rates, in the much simpler case in which the branching rate is constant, and so is the

probability of a jump in either direction.

1.1.2 Martensitic avalanches

Configurations of splitting rectangles similar to ours have been considered by Cesana

and Hambly [23] and Ball, Cesana and Hambly [4]. The authors consider models in

which rectangles always split at rates that depend only on their area, with a constant

probability p (or 1 − p) of splitting horizontally (or vertically), ensuring that their

models, suitably transformed by taking logarithms, fit into the framework of generalised

branching random walks. At this point, well-established tools from the broad literature

on branching random walks, among which [13, 14, 15, 16], make it possible to try

different splitting rule variants and work in both two and three dimensions.

The models introduced in [23], and [4] are motivated by applications to a martensitic

phase transition observed in a class of elastic crystals. During a martensitic transfor-

mation the system releases energy and the molecules rearrange from the highly regular

lattice structure of a crystal to a different configuration with lower symmetry. At this

point, an inhomogeneous pattern emerges, resembling the configuration of fragmented

rectangles, showing plates separated by sharp interfaces. Motivated by predictions

from the physics literature, the authors study the lengths of the horizontal“interfaces”
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between the fragments, obtaining that in certain cases the total number of interfaces

larger than x behaves like a random variable multiplied by an explicit power of x.

Although in principle the same questions could be attempted with our splitting

rules, shape-dependent rates lead to a much less flexible model. Chapter 3 shows that

even addressing the most natural question on how fast the number of fragments grows

requires a significant amount of work. Naturally, a much less tractable mathematical

analysis is the price we pay in our model for having shape-dependent rates and splitting

probabilities; such dependency in [23] and [4] is lost. See Figure 1-2.

Figure 1-2: On the left: a homogeneous model, where every rectangle splits at rate 1 and splits
horizontally or vertically with probability 1/2 each. On the right: our model where long, thin
rectangles split faster, and are more likely to split along their longest side. Tall rectangles are
coloured red, fat rectangles are coloured green, and squares are coloured yellow.

1.2. Branching processes with spatial dependencies

By transforming the fragmentation process with shape-dependent rates into an equiv-

alent branching random walk, we obtain a branching system where the rates depend

on the particles’ positions. Understanding spatially-dependent branching systems is an

important problem in its own right, since almost any real-world application of branch-

ing tools—from nuclear reactors [31, 33] to the spread of disease [26, 28]—involves

spatial inhomogeneity. Another purpose of our work is to contribute new techniques

to the rigorous mathematical investigation of spatially-dependent branching structures

more generally.

1.2.1 A closely related model with branching Brownian motion

In the recently growing literature on branching processes with spatially dependent

rates the most closely related work to our fragmentation model is [7], where the authors

determined the growth rates of the number of particles in a branching Brownian motion

with inhomogeneous and unbounded branching rate.

The system starts with a single particle at the origin moving as a standard Brownian

motion. Each particle at z branches at infinitesimal rate β|z|p, where β > 0 and

p ∈ (0, 2]. When it dies, a particle is replaced by a random number of offspring with

mean m, which move as Brownian motions starting from the position of their parent.
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For a set F ⊂ C[0, 1] let

NBBM
T (F ) := #

{
u ∈ NT : ∃f ∈ F width Xu(sT ) = T

2
2−p f(s) ∀s ∈ [0, 1]

}
be the number of particles alive at time T , whose rescaled paths belong to F . Denote

by H1 the set of absolutely continuous functions f : [0, 1]→ R. Define

KBBM(f, t) =

mβ
∫ t

0
|f(s)|pds− 1

2

∫ t

0
f ′(s)2ds if f ∈ H1

−∞ otherwise.

Theorem 1.1. For any closed set F ⊂ C[0, 1],

lim sup
T→∞

1

T
2+p
2−p

logNBBM
T (F ) ≤ sup{KBBM(f, 1) : f ∈ F, KBBM(f, s) > 0 ∀s ≤ 1}

almost surely, and for any open set F ⊂ C[0, 1],

lim inf
T→∞

1

T
2+p
2−p

logNBBM
T (F ) ≥ sup{KBBM(f, 1) : f ∈ F, KBBM(f, s) > 0 ∀s ≤ 1}

almost surely.

There are three main difficulties in our model relative to that in [7]. Firstly, in the

BBM, all particles move as standard Brownian motions, independent of their location

and their branching rate, whereas in our model particles jump and branch simultane-

ously. Indeed, it is worth noting that if the branching Brownian motion in [7] were

replaced by an analogous branching random walk, then if we started with one particle

at 0, the initial particle would never branch or move; whereas if we started with a par-

ticle at any other site, then even with bounded jump sizes, the collection of particles

would colonise space dramatically faster than the BBM (subject to the initial popu-

lation not returning to 0 quickly), since a particle branching at rate |z|p would also

be moving at rate |z|p. This highlights the challenge of controlling the dependencies

between particles’ positions and the growth of the population.

On top of this initial difference, our branching rate R(z) is much more difficult to

control than the smooth, symmetric, monotone (on each half-space) function |z|p. And

thirdly, our particles are able to make large jumps, meaning that standard large devi-

ations apparatus is more difficult to apply, and we must use a non-standard topology.

1.2.2 The asymptotic spread of the population

As we already anticipated, in Chapter 3 we find the almost sure growth rates for the

branching random walk (with spatially-dependent rates) equivalent to the process of

fragmenting rectangles. A closely related question is determining the position of the

maximal particle and the typical paths that particles follow to reach a given position.

For homogeneous spatial branching processes, obtaining a full picture of the spread

of the population has been a subject of interest for more than 45 years. To give just a

few highlights, the position of the extremal particle in BBM was studied by McKean

[37] and Bramson [20, 21], with more detailed recent studies on the behaviour near

the extremal particle by Aı̈dékon et. al. [2] and Arguin, Bovier and Kistler [3]. For

non-lattice branching random walks, Aı̈dékon [1] proved convergence in law for the re-

centered position of the extremal particle under fairly weak conditions. Bramson, Ding
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and Zeitouni [22] gave a shorter proof using a second moment method and indicated

that it should be possible to adapt their proof to branching random walks that take

values on a lattice.

For the BBM model in [7], after proving Theorem 1.1 the authors analysed their

almost-sure growth rate in some detail, giving implicit equations for the optimal paths

and the location of the bulk of the population (which became explicit in the cases p = 0

and p = 1). This was a difficult analytic task even for the relatively simple, monotone

growth rate seen in [7]. Our growth rate K is much more complex and it would take a

substantial amount of further work to analyse the optimal paths, so we do not attempt

this here.

Roberts and Schweinsberg [41] also consider branching Brownian motion in an

inhomogeneous potential, this time with a biological application in mind, where the

position of a particle represents its fitness and fitter individuals branch more quickly.

They use the tools from [7] to give a heuristic explanation of some of their results, but

use a more precise truncation argument for their proofs, based on techniques from [5]

and [6].

1.3. Small deviation results for random walks

One of the new ingredients that we need to prove in Chapter 3 are the estimates for

the probability that the rescaled paths of the branching random walk with spatially

dependent rates lie within a function set. In the second part of this thesis we turn

away from fragmentation processes to consider a different, but related, question: how

accurately can we bound the probability that the path of a stochastic process stays

near a given function? The ultimate goal of Chapter 4 is giving finer asymptotics of

this probability for a random walk with constant rate. This work is motivated by the

fact that, if we consider the random walk from Chapter 3, with the same space-time

scaling but narrower tube widths (of order, for example, T 1/3 instead of T ), then the

results already available in the literature for the probability that a single path lies in a

tube do not apply. Although this is our ultimate goal, the result we prove in Chapter

4 is a preliminary step in this direction and concerns instead the unscaled paths of a

random walk with constant rate, as opposed to the rescaled paths of the walk with

spatially dependent rates introduced in Chapter 3.

1.3.1 Mogul’skii small deviation theorem

Denote by D the space of càdlàg functions f : [0, 1]→ R. Consider a sequence of inde-

pendent identically distributed random variables (ξn)n≥1 with E[ξ1] = µ and E[ξ2
1 ] = σ2.

For a positive sequence (xn)n≥1 such that xn →∞, define

Sn(t) =
ξ1 + · · ·+ ξbntc − µbntc

σxn
, t ∈ [0, 1].

When xn =
√
n the Functional Central Limit Theorem ensures that the process

(Sn(t), t ∈ [0, 1]) converges in distribution to a standard Brownian motion in the space

D equipped with the Skorokhod topology. In [38], Mogul’skii studies the asymptotic

behaviour of the sequence P(Sn ∈ G) for G ⊆ D in the domain of small deviations,

that is when xn/
√
n→ 0.

Up to a change of measure, we can assume without loss of generality that µ = 0.

The following proposition is at the heart of Mogul’skii’s Theorem.
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Proposition 1.2. Let L > 0, x ∈ (−L,L) and τ ∈ [0, 1]. Then

lim
n→∞

1

n1/3
logPx(Sn(t) ∈ (−L,L) ∀t ∈ [0, τ ]) = −π

2τ

8L2
.

The proof of Proposition 1.2 consists of splitting [0, τ ] into smaller intervals, on

which Sn is on the right scale to converge to a Brownian motion; then use the available

results for the probability that a Brownian motion stays in a strip and combine together

the estimates on these smaller intervals.

In [38] this result is extended to a wider class of subsets of D. For example, for

tubes with piecewise constant width, we can apply a version of Proposition 1.2 for non-

symmetric tubes on each interval where the boundaries of the tube are constant. On

each of these smaller intervals, the process Sn will have different starting and ending

positions. Some technical work is required to show that, in the limit as n→∞, these

extra conditions do not affect the probability of Sn staying in a strip. From tubes

with piecewise constant boundaries, we can generalise to continuous boundaries by

approximating them with piecewise constant functions from above and below. This

gives the following proposition.

Proposition 1.3 (Mogul’skii [38]). Take two continuous functions L−, L+ : [0, 1]→ R
such that L−(t) < L+(t) for every t ∈ [0, 1]. Let x ∈ (L−(0), L+(0)). Then

lim
n→∞

1

n1/3
logPx(L−(t) ≤ Sn(t) ≤ L+(t) ∀t ∈ [0, 1]) = −π

2

2

∫ 1

0

dt

(L+(t)− L−(t))2
.

Ultimately, the last theorem in [38] extends this even further to more general subsets

of D, but the rate of decay is more implicit. Furthermore, we have only considered

the random walk Sn as a case study, but a similar statement can be obtained for

a wider class of processes with independent increments which converge weakly to a

stable distribution with exponent α ∈ (0, 2].

1.3.2 Tubes about nonlinear functions

With a simple change of measure, it is easy to extend Propositions 1.2 and 1.3 to tubes

centred about linear functions F (s) = zs. In Chapter 4 we do not rescale the paths of

the process and consider functions with a nonlinear component.

Take a compound Poisson process (X(s), s ≥ 0) with rate r and assume that its

jump distribution ξ satisfies E[eη|ξ|] <∞ for some η > 0.

Let L > 0, p, q ∈ [−1, 1] with p < q be independent of T . We determine the

behaviour of

PxT
(
|X(s)− zs−G(s)|< LT 1/3 ∀s ∈ [0, T ], X(T )− zT −G(T ) ∈ (pLT 1/3, qLT 1/3)

)
when T is large where z ∈ R is a constant independent of T , G(s) is a twice differentiable

function such that G(0) = 0 and xT ∈ (−LT 1/3, LT 1/3) satisfies limT→∞ xT /T
1/3 = x,

with x ∈ (−L,L). There are further technical conditions on G(s), which we postpone

to Chapter 4, but we essentially require that |G′| decreases fast enough.

Define φ(λ) = E[eλξ] and let

Λ(z) := sup
λ:φ(λ)<∞

{λz − logE[eλX(1)]} = sup
λ:φ(λ)<∞

{λz − rφ(λ) + r}
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be the usual large deviations rate function. Denote by λ(z) the value of λ for which

the supremum is achieved, so that

Λ(z) = λ(z)z − rφ(λ(z)) + r

and λ(z) satisfies φ′(λ(z)) = z/r.

Let D be the space of càdlàg functions H : [0,∞)→ R. For F ∈ C2([0,∞),R), let

B(F,L, a, b)|[u,t]= {H ∈ D : |H(s)− F (s)|< L ∀s ∈ [u, t], H(t)− F (t) ∈ (aL, bL)}.

The main result we prove in Chapter 4 is the following.

Theorem 1.4. Let FT (s) = zs + G(s) − xT , where G(s) and xT satisfy some extra

properties (see (i)-(v) from Section 4.1 in Chapter 4). If z > rE[ξ] then

lim
T→∞

1

T 1/3

(
logP0(X ∈ B(FT , LT

1/3, p, q)|[0,T ]) + Λ(z)T

+ λ(z)G(T )− 1

2

∫ T

0

G′(s)2

rφ′′(λ(z))
ds

)
= λ(z)(x− pL)− π2rφ′′(λ(z))

8L2
.

If z < rE[ξ] the same result holds but replacing pL with qL on the right-hand side. If

z = rE[ξ] the same holds with λ(z) = 0, Λ(z) = 0 and φ′′(λ(z)) = E[ξ2].

An analogous statement to Theorem 1.4 holds for discrete time random walks.

As we already observed, the key point in the proof of Mogul’skii’s Theorem is that,

for a process with mean zero, the probability of staying in a strip of constant width

is not asymptotically affected by the position at which the process starts and ends

at the beginning and at the end of the interval. We can always assume by a simple

transformation that our process has mean zero. However, the fact that the values of

the process at the endpoints of the smaller intervals give a negligible contribution to

the probability that the process stays in a tube is a peculiar feature of the case in which

the process has mean zero and the tube is centred around the zero function. As it will

appear more explicitly in the proofs in Chapter 4, this is no longer the case when the

function is nonlinear.

Further to this difficulty, while Girsanov’s Theorem for Brownian motion can change

the drift to any continuous curve, for a compound Poisson process, for example, it only

allows to consider linear functions on fixed intervals.

Our strategy is similar to the proof of Theorem 1.3, in the sense that we also split

[0, T ] into subintervals on which we approximate our process with a Brownian motion.

To combine these results together, we need to estimate the error in the approximation

given by the Functional Central Limit Theorem. An improved version of it, which

provides the rate of convergence, is the Komlós-Major-Tusnády Theorem (see [35] for

the original paper, and [24] for a more modern formulation). This is one of the steps

where the strictest assumptions on G are required. We use sharper estimates of the

probability that a Brownian motion stays in a tube with respect to the ones that appear

in [38].

We conclude by stressing again that the assumptions we make in Chapter 4 are

certainly not optimal and the results we present could be extended, for example, to

broader classes of functions and tubes of width varying with time.
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Chapter 2

Warming up: splitting at constant rate

In this chapter we work with the same model of fragmenting rectangles described in

Chapter 1, except that every rectangle splits at constant rate r and the break occurs

horizontally with probability p ∈ (0, 1), or vertically with probability 1− p.
In a similar way to the models in [23] and [4], a logarithmic transformation of this

fragmentation process gives a general branching random walk Zu(s) = (Xu(s), Yu(s)),

where every particle branches at rate r; whenever a particle at position (x, y) branches,

it is replaced by two children at positions x− logU and x− log(1−U) with probability

p (respectively, at y − logU and y − log(1 − U) with probability 1 − p), where U is

uniformly distributed on (0, 1). It is clear that Xu(s) and Yu(s) are independent when

the rate and the probability of splitting in either direction are constant. Therefore the

mathematical analysis of the fragmentation process reduces to separately considering

the two components, that is two branching random walks with rates rp and r(1 − p)
respectively.

In this chapter we sketch the proof of the almost sure growth rates for this simplified

version of the shape dependent fragmentation process; we prove the same result for the

latter in Chapter 3. The tools that appear in the next sections are well-known results

for branching random walks, in a technical setting similar to the one that will appear

in Chapter 3. This chapter is intended as a warming up, to gradually introduce the

notation and to highlight the steps where the spatial dependence of the rates requires

a more involved proof. The experienced reader can skip this preliminary example and

move on directly to Chapter 3.

2.1. Large deviations and technicalities on function spaces

One of the main ingredients we need in our proof is estimating the probability that

a single particle trajectory stays near a given path. Fix T and define the T -rescaled

trajectory of a process (X(t), t ≥ 0) by

XT (t) =
X(tT )

T
, 0 ≤ t ≤ 1.

For a wide class of processes with constant rate, estimates of the probability that XT (·)
belongs to a given function set are already available in the form of large deviation

principles.

Standard large deviation principles assume that the increments of the process satisfy

the strong Cramér condition, that is E[eλξ] < ∞ for all λ ∈ R. For random walks in

discrete time, for example, the large deviation principle can be established in the space

of absolutely continuous functions with the uniform metric, see for example [25]. If the

process jumps at random times, the natural choice of the function space is the set of

càdlàg functions D, equipped with a topology that makes it a Polish space. Borovkov

[17] proved a large deviation principle for compound Poisson processes satisfying the

strong Cramér condition, in the space D with the J1 topology – or Skorokhod topology

– that is, the topology induced by the Skorokhod metric.

Our process is more complicated, because the jumps are exponentially distributed

and do not satisfy the strong Cramér condition. This means that particles can make
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macroscopic jumps, in the sense that their rescaled paths will not be continuous. Fur-

thermore, it is possible for particles to make two (or more) macroscopic jumps in quick

succession. As a consequence, the J1 topology is not suitable, because the rescaled set

of paths that our particles take will not be compact in this topology.

Instead we use the M2 topology, induced by the graph distance dgraph, which is

defined as follows. For f ∈ D we denote by Γ(f) its graph, which is a subset of R2

containing the following points: if f is continuous at t then (t, f(t)) ∈ Γ(f); if t is

a discontinuity point of f then (t, α) ∈ Γ(f) for every α between f(t−) and f(t+).

Denote by ‖ · ‖ the Euclidean metric in R2 and define

Γ(f)ε = {x ∈ R2 : ∃y ∈ Γ(f) : ‖x− y‖ < ε}.

Then dgraph(f, g) < ε if and only if Γ(f) ∈ Γ(g)ε and Γ(g) ∈ Γ(f)ε simultaneously.

The M2 topology is weaker than the J1 topology. For example, if we define

fn(x) =


0 if x < 1− 1/n

1 if 1− 1/n ≤ x < 1 + 1/n

2 if x ≥ 1 + 1/n,

f(x) =

{
0 if x < 1

2 if x ≥ 1,

then (fn)n converges to f in the M2 topology, but not in the Skorokhod metric, where

each fn has distance 1 from f .

For a detailed analysis of intermediate topologies between J1 and M2 we refer to

[18] and [42].

2.1.1 Mogul’skii’s theorem about large deviations

In [39], Mogul’skii proves a large deviation principle for a compound Poisson process

whose increments only satisfy E[eλ|ξ|] <∞ for some λ > 0 (which is obviously true for

the exponential distribution), in the space D with the M2 topology.

Let (X(t), t ≥ 0) be a compound Poisson process with rate r and jump distribution

ξ such that E[eλ|ξ|] <∞ for some λ > 0. Let λ− = inf{λ : E[eλξ] <∞} ∈ [−∞, 0) and

λ+ = sup{λ : E[eλξ] <∞} ∈ (0,+∞].

Define the Legendre transform of E[eλX(1)] by

Λr(x) = sup
λ∈(λ−,λ+)

{λx− logE[eλX(1)]}, x ∈ R.

When λ ∈ (λ−, λ+) the moment generating function φ(λ) = E[eλξ] is well defined and

so is E[eλX(1)] = erφ(λ)−r. Then

Λr(x) = sup
λ∈(λ−,λ+)

{λx− rφ(λ) + r}. (2.1)

Denote by D the set of cádlág functions f : [0, 1] → R. If f ∈ D is absolutely

continuous, for 0 ≤ a < b ≤ 1 let

Ir(f, a, b) =

∫ b

a
Λr(f

′(s))ds

and let Ir(f, a, b) = +∞ otherwise. By the Lebesgue decomposition theorem, we can

write f ∈ D as f = f̃ + f̂ where f̃ is absolutely continuous and f̂ is singular. We can
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also represent f̂ = f̂+ − f̂− where f̂+, f̂− are non-decreasing functions. Let

Jr(f, a, b) = Ir(f̃ , a, b) + λ+(f̂+(b)− f̂+(a))− λ−(f̂−(b)− f̂−(a)).

Theorem 2.1 (Mogul’skii [39]). For every F ⊂ D closed,

lim sup
T→∞

1

T
logP(XT ∈ F ) ≤ − inf

f∈F
Jr(f, 0, 1)

and for every F ⊂ D open

lim inf
T→∞

1

T
logP(XT ∈ F ) ≥ − inf

f∈F
Jr(f, 0, 1).

Since we are interested in a continuous-time random walk whose jumps are expo-

nentially distributed with mean 1, the trajectories can only have positive jumps, so we

can restrict Theorem 2.1 to sets of non-decreasing functions. We denote by E the set

of non-decreasing functions in D. The Lévy metric [36] on E is defined by

d(f, g) = inf{r > 0 : f(x− r)− r < g(x) < f(x+ r) + r ∀x ∈ [−r, 1 + r]}, (2.2)

where f(x) is interpreted to equal f(0) for x < 0 and f(1) for x > 1, and similarly for

g. The Lévy metric generates Skorokhod’s M2 topology on E, so (E, d) is a subspace

of D equipped with the relative topology generated by dgraph in D. The metric space

(E, d) is complete and separable.

When the branching rate is r and the jump distribution ξ is exponentially dis-

tributed with mean 1, standard calculations give that E[eλξ] = 1/(1−λ) for λ ∈ (−∞, 1)

and that the supremum in (2.1) is achieved when λ = 1−
√
r/x, so

Λr(x) = (
√
r −
√
x)2.

Using that f̂ = f̂+ for every f ∈ E and that λ+ = 1 gives

Jr(f, a, b) =

∫ b

a

(√
r −

√
f ′(s)

)2
ds+ f̂(b)− f̂(a). (2.3)

2.1.2 Extension to spatially dependent rates: a coupling method

When the rate is dependent on the particles’ positions, large deviation results such as

Theorem 2.1 are not directly available. In fact, one of the novelties that will appear

in Chapter 3 is a method to estimate probabilities such as those in Theorem 2.1 for a

process with spatially dependent rates.

Section 3.6 is devoted to rigorously defining a coupling which traps the branching

random walk with spatially dependent rates in between two processes with constant

rate. We will work on small intervals, on which the rate function can be approximated

with its maximum and minimum value. In this way, we translate the probability that a

single trajectory of our process stays near a given function into probabilities involving

the two bounding processes with constant rates, for which we are able to carry out the

calculations.

We then relate these complicated expressions to a more explicit functional, which

plays the role of Jr in Theorem 2.1 and to make sure that it satisfies a number of

usual properties of large deviation functionals. For example, the lower semicontinuity
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of Jr(f) with respect to the metric dgraph is proved in [19] and we need an analogous

result for our rate. Sections 3.A and 3.B of Chapter 3 are devoted to technical checks

on semicontinuity.

2.2. Calculating expectations with Many-to-few Lemmas

The Many-to-one Lemma for branching systems is a widely known tool, which reduces

an expectation involving all the particles alive at time t to another expectation, under

a different probability measure, only involving one process. We state here the result in

its simplest version for a branching random walk in which particles die at constant rate

r and are replaced by two offspring whose displacements are exponentially distributed

with mean 1.

Let Qx be a probability measure under which ξt is a continuous-time random walk

starting from x, with rate 2r and exponential jumps with mean 1.

Lemma 2.2 (Many-to-one). For any measurable function F : R→ R,

EPx

[∑
v∈Nt

F (Xv(t))

]
= ertEQx [F (ξt)].

Although it is a relatively simple tool, the Many-to-one Lemma proves to be useful

when we deal with space dependent rates. In this case, ertEQx [F (ξt)] is replaced by

EQx

[
e
∫ t
0 R(ξs)dsF (ξt)

]
. (2.4)

Take F to be the indicator of events of the form {ξT (s) ∈ B(f, ε) ∀s ∈ [0, t]}. On these

events, since the trajectory of the process is near f , the branching rate at time sT ,

s ≤ t is approximately R(Tf(s/T )). As this quantity is deterministic, the expectation

in (2.4) reduces to the product of an exponential, deterministic term and the probability

Qx

(
ξT (s) ∈ B(f, ε) ∀s ∈ [0, t]

)
.

The Many-to-one Lemma can be proved using spine techniques, see [29], [30] and

[32] for a detailed formulation. The same approach of the Many-to-one Lemma can

be extended to higher order moments: k-moments can be turned into expectations

only involving the correlated paths of k stochastic processes, thus obtaining Many-to-k

Lemmas. [32] contains a rigorous construction of the probability measures in terms of

Radon-Nykodim derivatives, under more general assumptions on the branching rate,

the offspring distribution and the motion of each particle in the system than ours. In

particular, in Sections 3.2.1 and 3.3.2 in Chapter 3 we will see in more detail the version

of the lemmas in which the branching rate can depend on the position of the particles.

Since our proof relies on the second moment method, we are only interested here

in the case k ∈ {1, 2}. In the case k = 2, we define two continuous-time random walks

ξ1
t , ξ2

t and a new probability measure Q2
x under which the two processes ξ1

t , ξ2
t behave

as follows. Let τ be exponentially distributed with parameter 2r. Then:

• Conditional on τ = u, we have ξ1
t = ξ2

t for every t < u, both processes start from

x, jump at rate 2r and their jumps are exponentially distributed with mean 1;

• Let U be uniformly distributed on (0, 1) and independent of everything else. We

let ξ1
τ = ξ1

τ− − logU and ξ2
τ = ξ1

τ− − log(1− U);
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• Conditionally on τ , (ξ1
t )t≤τ and (ξ2

t )t≤τ , the processes (ξ1
t )t≥τ and (ξ2

t )t≥τ behave

independently, jumping at rate 2r and with jumps exponentially distributed with

mean 1.

Lemma 2.3 (Many-to-two). For any measurable function F : R2 → R,

EPx

 ∑
v1,v2∈Nt

F (Xv1(t), Xv2(t))

 = EQ2
x

[
e2rt+r(τ∧t)F (ξ1

t , ξ
2
t )
]
.

2.3. Almost sure growth and growth in expectation

Consider a branching random walk (Xr(s), s ≥ 0) with rate r and exponentially dis-

tributed jumps with mean 1. For T ≥ 0, we let NT be the set of particles that are alive

at time T . For u ∈ NT and t ≤ T , let Xr
u(t) be the position of the unique ancestor of

u in Nt. For u ∈ NT and s ∈ [0, 1], write

Xr,T
u (s) = Xr

u(sT )/T.

We call (Xr,T
u (s), s ∈ [0, 1]) the T -rescaled path of u. For a given set of functions

F ⊆ E, define

N r
T (F ) = #{u ∈ NT : Xr,T

u ∈ F},

the number of particles at time T whose T -rescaled paths have remained within F .

Recall from (2.3) that

Jr(f, a, b) =

∫ b

a

(√
r −

√
f ′(s)

)2
ds+ f̂(b)− f̂(a) (2.5)

for a random walk with rate r and exponentially distributed jumps with mean 1.

Let

K̃r(f, a, b) =

{
r(b− a)− J2r(f, a, b) if J2r(f, a, b) <∞
−∞ otherwise.

The following result, which establishes the expected growth rates for a branching

random walk with rate r, is an immediate consequence of the many-to-one Lemma and

the large deviations result in Theorem 2.1.

Proposition 2.4. If F ⊂ E is closed, then

lim sup
T→∞

1

T
logE[N r

T (F )] ≤ sup
f∈F

K̃r(f, 0, 1),

and if F ⊂ E is open, then

lim inf
T→∞

1

T
logE[N r

T (F )] ≥ sup
f∈F

K̃r(f, 0, 1).

We next prove a stronger statement about the growth of the number of particles

almost surely. As it often happens, the result that holds in expectation does not reflect
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the actual behaviour of the system. Define

Kr(f) =


K̃r(f, 0, 1) if K̃r(f, 0, s) > 0 ∀s ≤ 1;

−∞ if ∃s ≤ 1 such that K̃r(f, 0, s) < 0;

0 otherwise.

Theorem 2.5. If F ⊂ E is closed and supf∈F Kr(f) 6= 0, then

lim sup
T→∞

1

T
logN r

T (F ) ≤ sup
f∈F

Kr(f) almost surely,

and if F ⊂ E is open and supf∈F Kr(f) 6= 0, then

lim inf
T→∞

1

T
logN r

T (F ) ≥ sup
f∈F

Kr(f) almost surely.

Theorems 2.4 and 2.5 show that if K̃r(f, 0, s) > 0 for all s ≤ 1, then the almost sure

number of particles with a rescaled path looking like f up to time 1 matches with the

expected number of particles following that path; if there exists a time s < 1 at which

K̃r(f, 0, s) < 0 then at that time the number of particles along f is zero, that is, the

genealogy becomes extinct. Therefore, although we might expect to see exponentially

many particles at time T near Tf(1), there are almost surely no particles following

that path up to time T .

As we already mentioned at the beginning of this chapter, the two-dimensional

branching random walk with spatially-dependent rates reduces to two independent com-

ponents when the branching rate and the probability of splitting in the horizontal (or

vertical) direction are constant. From Theorem 2.5, which concerns a one-dimensional

branching random walk, we can immediately deduce the growth rates for the branch-

ing random walk Zru(s) = (Xr,p
u (s), Y r,p

u (s)), where Xr,p
u (s) and Y r,p

u (s) are independent

and branch at rates rp and r(1− p) respectively.

2.4. Sketch proof of Theorem 2.5

In this section we focus on the building blocks necessary to prove Theorem 2.5. Al-

though even shorter arguments than the ones presented here might work, for discussion

purposes we decided to follow the same proof structure as in Chapter 3. Some tech-

nical details, which we prove in the more complicated case of spatially dependent, are

omitted here.

To simplify our notation, until the end of this chapter we will refer to Xr
u(s) and

N r
T (F ) as Xu(s) and NT (F ).

2.4.1 Compactness and ruling out difficult paths

As we already noticed in Section 2.2, one of the key ideas we exploit to control the rate

of the branching random walk when it depends on the particles’ position is looking at

the number of particles which have rescaled paths in B(f, ε). Since the Lévy metric

is weaker than the sup-norm ρ on E, for any open set F ⊆ E we can bound NT (F )

from below with NT (Bρ(f, ε)), f ∈ F . For an upper bound on NT (F ), we cover all

the possible particle trajectories with sets of the form B(f, ε). We start by ruling out

some unlikely paths along which the probability of finding any particle is exponentially
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small. At the same time, we make sure to reduce the paths of interest to a compact

set, for which it is possible to find a finite covering.

Define, for M > 1,

GM = {f ∈ E : f(s) ≤Ms ∀s ∈ [0, 1]}.

We want to show that the rescaled path of all particles lie with high probability in

GM , if M is sufficiently large. However, since the particles in the branching random

walk have exponentially distributed jumps, it helps to have a larger set of paths that

allows for large jumps near the origin: we define, for M > 1 and T > 1,

GM,T := {f ∈ E : f(s) ≤M(s+ 2T−2/3) ∀s ∈ [0, 1]}.

The choice of T−2/3 is somewhat arbitrary. Any exponent in (−1, 0) would work,

but −2/3 turns out to be a convenient choice for the calculations in Chapter 3 and so

we keep the same definition here.

The next lemma we introduce states that F ∩ GM,T is totally bounded. We first

need some new definitions.

For F ⊂ E and δ > 0, let Bd(F, δ) = ∪f∈FBd(f, δ).
Denote by PLn the set of functions g : [0, 1]→ R which are continuous and piecewise

linear on [i/n, i/n+1/n] for i ∈ {0, . . . , n−1}. Due to technical reasons, we need to have

a better control at how close two functions can be at the endpoints of these intervals,

thus we introduce the following distance. For f, g ∈ E, let

∆n(f, g) = max{|f(i/n)− g(i/n)| : i = 0, . . . , n}.

For T,M > 1, n ∈ N and f ∈ E, define

ΓM,T (f, n) = B∆n(f, 1/n2) ∩Bd(f, 1/n) ∩GM,T .

Lemma 2.6. Let F ⊂ E and M > 1. For any n ≥ 4M , there exist N ∈ N and

g1, . . . , gN ∈ G4M ∩ PLn such that

F ∩GM,T ⊂
N⋃
i=1

ΓM,T (gi, n) ⊂ Bd(F, 2/n)

for all T ≥ (4Mn)3/2.

We give a proof of Lemma 2.6 in Section 3.B.1 of Chapter 3, so we omit it here.

To complete the previous result, we have to show that with high probability, as T

tends to infinity, all the particles have rescaled paths in GM,T .

Lemma 2.7. There exist M0, δ0, C > 0 such that for any T ≥ 0

P(∃u ∈ NT : XT
u /∈ GM0,T ) ≤ Ce−δ0T 1/3

.

We give here a proof of Lemma 2.7 based on a formal construction of the branching

random walk introduced in Section 2.3. We define a discrete tree with labels to represent

the positions and split times of particles.

Take an infinite binary tree T and let Tn be the vertices in the nth generation of T,

so that |Tn|= 2n. Attach to each vertex v ∈ T two independent random variables: Uv,
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which is uniformly distributed on (0, 1) and ev, which is exponentially distributed with

parameter r. We define recursively the random variables Xv and Tv for each vertex

v ∈ T, which represent the position of the particle in the branching random walk and

its birth time.

If v ∈ Tn and v1 and v2 are the two children of v in generation n+ 1, set

Xv1 = Xv − logUv, Xv2 = Xv − log(1− Uv), Tv1 = Tv2 = Tv + ev.

For each t ≥ 0, define

Nt = {v ∈ T : Tv ≤ t < Tv + ev},

the set of particles alive at time t. For v ∈ Nt, and s ≤ t, if u is the unique ancestor of

v in T that satisfies Tu ≤ s < Tu+eu, then set Xv(s) = Xu. We call Xv(s) the position

of particle v at time s.

We show the following intermediate result before proving Lemma 2.7.

Lemma 2.8. There exist C > 0 and M > 1 such that for any T ≥ 0

P(∃n ≥ 0, ∃v ∈ Tn : Xv > Mn+ T 1/3 or Tv < n/M − T 1/3) ≤ Ce−T 1/3/2.

Proof. Fix n ∈ N and u ∈ Tn. Then Xu is the sum of n independent exponential

random variables with mean 1. Letting e ∼ Exp(1),

P(Xu > Mn+ T 1/3) ≤ E[eXu/2]e−Mn/2−T 1/3/2 ≤ E[ee/2]ne−Mn/2−T 1/3/2

= 2ne−Mn/2−T 1/3/2.

Since there are 2n particles in Tn, a union bound gives

P(∃v ∈ Tn : Xv > Mn+ T 1/3) = 2nP(Xu > Mn+ T 1/3) ≤ 4ne−Mn/2−T 1/3/2,

which can be made smaller than e−n−T
1/3/2 by choosing M large.

Analogous calculations give that P(∃v ∈ Tn : Tv < n/M −T 1/3) ≤ e−n−T 1/3/2 when

M is large, and the statement of the lemma follows from a union bound on n.

Proof of Lemma 2.7. We show that for any α ∈ (0, 1), on the event

{Xv ≤Mn+ Tα, Tv ≥ n/M − Tα ∀v ∈ Tn, ∀n ≥ 0}

every particle is in GM2,T , that is for any u ∈ NT , XT
u (s) ≤M2(s+ 2Tα−1) ∀s ≤ 1.

Let v be the unique ancestor of u in Ns and n(v) the unique natural number such

that v ∈ Tn(v). Then Xu(s) = Xv and Tv ≤ s < Tv + ev. If Xv ≤ Mn(v) + Tα and

Tv ≥ n(v)/M − Tα, which implies n(v) ≤M(Tv + Tα), then

Xu(s) = Xv ≤Mn(v) + Tα ≤M2(Tv + Tα) + Tα ≤M2(s+ Tα) + Tα.

Rescaling by T this gives that

XT
u (s) ≤M2(s+ Tα−1) + Tα−1 ≤M2(s+ 2Tα−1),
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as required. Choosing α = 1/3, the proof of Lemma 2.7 follows from Lemma 2.8.

We will use a similar strategy in Section 3.4 of Chapter 3, where the discrete

construction of the process will be useful to decouple the dependencies between the

jump times and the positions of the particles: by looking at events on which the

positions of the particles stay in a cone, we can control the branching rate and therefore

the birth times. In Chapter 3 we will have a different definition of GM , which rules out

paths that are too steep but also paths that stay too flat, so that the paths in GM are

those that lie in a cone between two straight lines. Since the rate function is the ratio

of the two spatial components, this will give that the rate is bounded along the paths

in GM .

2.4.2 Proof of the upper bound in Theorem 2.5

Recall the definition

ΓM,T (f, n) = B∆n(f, 1/n2) ∩Bd(f, 1/n) ∩GM,T

for T,M > 1, n ∈ N and f ∈ E. Lemma 2.6 shows that we can cover GM,T with the

finite union of the sets ΓM,T (gi, n), i = 1, . . . , N .

The first proposition we prove concerns the number of particles whose rescaled paths

lie in ΓM,T (gi, n) for a fixed gi. Combining these results together for all the functions

gi, i ∈ {1, . . . , N} we will be able to cover GM,T while, at the same time, we can rule

out paths outside GM,T thanks to Lemma 2.7. An upper bound for the number of

particles whose paths lie in sets like ΓM,T (gi, n), is easily given by the combination of

the Many-to-one Lemma and Theorem 2.1.

If F ⊂ E and g : [0, θ]→ R, we say that g ∈ F |[0,θ] if there exists a function h ∈ F
such that h(u) = g(u) for all u ∈ [0, θ]. Define

NT (F, θ) = #{v ∈ NθT : ZTv ∈ F |[0,θ]},

the number of particles at time θT whose T -rescaled paths have remained within F up

to time θ.

Proposition 2.9. Suppose that θ ∈ (0, 1] and g ∈ PLn. For any κ > 0,

P(NT (ΓM,T (gi, n), θ) ≥ κ) ≤ 1

κ
exp

(
K̃r(g, 0, θ)T + 8T (

√
r+1)√
n

)
if T is large enough.

Proof. By Markov’s inequality, for any κ > 0

P(NT (ΓM,T (gi, n), θ) ≥ κ) ≤ 1

κ
E

 ∑
v∈NT

1{XT
v |[0,θ]∈ΓM,T (gi,n)|[0,θ]}

 .
By the Many-to-one Lemma,

E

 ∑
v∈NT

1{XT
v |[0,θ]∈ΓM,T (gi,n)|[0,θ]}

 = erTQ
(
ξT |[0,θ]∈ ΓM,T (gi, n)|[0,θ]

)
, (2.6)

where ξt branches at rate 2r under Q.
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By a slight modification of Theorem 2.1,

Q
(
ξT |[0,θ]∈ ΓM,T (gi, n)|[0,θ]

)
≤ exp

(
− inf
h∈ΓM,T (gi,n)|[0,θ]

J2r(h, 0, θ)T + T√
n

)
if T is large enough. Since gi ∈ PLn, it is easy to see that

inf
h∈ΓM,T (gi,n)|[0,θ]

J2r(h, 0, θ) ≥ J2r(g, 0, θ)− 8
√
r√
n
,

and so

Q
(
ξT |[0,θ]∈ ΓM,T (gi, n)|[0,θ]

)
≤ exp

(
− J2r(g, 0, θ)T + 8T (

√
r+1)√
n

)
.

From this and (2.6) we deduce that

P(NT (ΓM,T (gi, n), θ) ≥ κ) ≤ 1

κ
exp

(
rT − J2r(g, 0, θ)T + 8T (

√
r+1)√
n

)
=

1

κ
exp

(
K̃r(g, 0, θ)T + 8T (

√
r+1)√
n

)
.

The core of the proof of the upper bound of Theorem 2.5 consists of the following

two propositions.

In the first one we show that for any fixed, large time T , the number of particles

staying in F ⊂ E is larger than exp
(

supf∈F∩GM K̃r(f, 0, 1)
)

with small probability.

The proof uses Lemma 2.6 to cover F with finitely many sets ΓM,T (gi, n), i ∈ {1, . . . , N}
and then applies Proposition 2.9. This proposition corresponds to Proposition 3.8 in

Chapter 3.

Proposition 2.10. Recall the definition of M0 and δ0 from Lemma 2.7. If F ⊂ E is

closed, then for M ≥ 4M0 and ε > 0

lim
T→∞

1

T 1/3
logP

(
NT (F ) ≥ exp

(
sup

f∈F∩GM
K̃r(f, 0, 1)T + εT

))
≤ −δ0.

Proof. By Lemma 2.6, we can choose N ∈ N and g1, . . . , gN ∈ G4M ∩ PLn such that

F ∩GM,T ⊂
N⋃
i=1

ΓM,T (gi, n) ⊂ Bd(F, 2/n).

Let A = supf∈F∩G4M
K̃r(f, 0, 1) + ε. Then

P(NT (F ) ≥ eAT ) ≤ P(∃v ∈ NT : ZTv /∈ GM,T ) +
N∑
i=1

P
(
NT (ΓM,T (gi, n)) ≥ eAT

N

)
.

By Lemma 2.7, the first term on the right-hand side is smaller than Ce−δ0T
1/3

, and

since gi ∈ PLn, we can estimate each term in the sum with Proposition 2.9. If M ≥M0
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and n and T are large enough, then

P(NT (F ) ≥ eAT ) ≤ Ce−δ0T 1/3
+

N

eAT

N∑
i=1

exp
(
K̃r(gi, 0, 1)T +

εT

3

)
≤ Ce−δ0T 1/3

+
N2

eAT
max

i∈{1,...,N}
exp

(
K̃r(gi, 0, 1)T +

εT

3

)
. (2.7)

Since B(gi, 1/n) ⊂ B(F, 2/n) for every i ∈ {1, . . . , N},

max
i∈{1,...,N}

exp
(
K̃r(gi, 0, 1)T +

εT

3

)
≤ sup

f∈B(F,2/n)∩G4M

exp
(
K̃r(f, 0, 1)T +

εT

3

)
.

From the lower semicontinuity of Jr, if F ⊂ E is closed then

lim
n→∞

sup
f∈B(F,2/n)∩G4M

K̃r(f, 0, 1) ≤ sup
f∈F∩G4M

K̃r(f, 0, 1).

Going back to (2.7) and substituting A = supf∈F∩G4M
K̃r(f, 0, 1) + ε we obtain

P(NT (F ) ≥ eAT ) ≤ Ce−δ0T 1/3
+N2e−AT exp

(
sup

f∈F∩G4M

K̃r(f, 0, 1)T +
2εT

3

)
≤ Ce−δ0T 1/3

+N2e−εT/3,

and so

lim
T→∞

1

T 1/3
logP(NT (F ) ≥ eAT ) ≤ −δ0.

This is the statement of the proposition with 4M instead of M . Since we only assumed

in the proof that M ≥M0, the proposition holds also when M ≥ 4M0.

We now prove the second proposition required for the upper bound. We already

observed that the paths such that Kr(f) = −∞ but K̃r(f, 0, 1) > 0 are those for which

there exists a time θ ∈ (0, 1) with K̃r(f, 0, θ) < 0, and therefore the population goes

extinct. As a consequence, if F only contains such paths, there will be no particles

whose rescaled paths lie in F . For this class of sets, Proposition 2.10 does not provide

a useful bound, therefore we need the following result.

Proposition 2.11. Recall the definition of δ0 from Lemma 2.7. If F ⊂ E is closed

and supf∈F Kr(f) = −∞, then

lim
T→∞

1

T 1/3
logP(NT (F ) ≥ 1) ≤ −δ0.

Proof. We can show that if F ⊂ E is closed and supf∈F Kr(f) = −∞, if M ≥ 4M0

there exists n0 such that

sup
f∈Bd(F,2/n0)∩G4M

inf
θ∈[0,1]

K̃r(f, 0, θ) < 0.

For a proof, we refer to the proof to Lemma 3.39 in Chapter 3. Let

η = − sup
f∈Bd(F,2/n0)∩G4M

inf
θ∈[0,1]

K̃r(f, 0, θ) > 0.
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Take n ≥ n0 and such that r/n ≤ η/2. By Lemma 2.6, we can choose N ∈ N and

g1, . . . , gN ∈ G4M ∩ PLn such that for every T ≥ (4Mn)3/2

F ∩GM,T ⊂
N⋃
i=1

ΓM,T (gi, n) ⊂ Bd(F, 2/n).

For each i ∈ {1, . . . , N}, since gi ∈ PLn, for every 0 ≤ s ≤ t ≤ 1,

K̃r(gi, 0, t) = rt− I2r(gi, 0, t) ≤ rt− I2r(gi, 0, s) = r(t− s) + K̃r(gi, 0, s). (2.8)

In particular, this implies that the function t→ K̃r(gi, 0, t) has only downward jumps,

and therefore its infimum is achieved. Let θi be such that

K̃r(gi, 0, θi) = inf
θ∈[0,1]

K̃r(gi, 0, θ) ≤ −η.

By Proposition 2.9,

P(NT (ΓM,T (gi, n), θi) ≥ 1) ≤ eK̃r(gi,0,θi)T+ηT/2 ≤ e−ηT/2

if n and T are large enough. Since a population that is extinct at time θ < 1 must be

extinct also at time 1, then for every i ∈ {1, . . . , N}

P(NT (ΓM,T (gi, n) ≥ 1) ≤ P(NT (ΓM,T (gi, n), θi) ≥ 1) ≤ e−ηT/2. (2.9)

From our choice of g1, . . . , gN we have

P(NT (F ) ≥ 1) ≤ P(NT (GcM,T ) ≥ 1) +

N∑
i=1

P(NT (ΓM,T (gi, n)) ≥ 1).

By Lemma 2.7, the first term on the right-hand side is smaller than Ce−δ0T
1/3

and each

one of the terms in the sum is bounded uniformly in i from (2.9). This gives that

P(NT (F ) ≥ 1) ≤ Ce−δ0T 1/3
+Ne−ηT/2,

from which the statement follows.

We have now proved Propositions 2.10 and 2.11, which concern the number of

particles in the branching system at fixed, large times. We can upgrade these results

to all large times simultaneously and show that

lim sup
T→∞

1

T
logNT (F ) ≤ sup

f∈F∩GM
K̃r(f, 0, 1) almost surely

and that, if supf∈F Kr(f) = −∞, then lim supT→∞NT (F ) = 0 almost surely. The

details are rather technical, so we refer to Section 3.7.4 of Chapter 3 for a full proof

(but with spatially dependent rates): first we show that rescaling the paths by slightly

different values of T does not affect the probability that they lie in a given set of

functions, and then we apply the Borel-Cantelli Lemma.
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2.4.3 Proof of the lower bound in Theorem 2.5

The standard approach to prove the lower bound in Theorem 2.5 is looking at the

descendants of particles alive in an early generation and show that they have paths

near f with positive probability. If we can show that there is a large enough number

of particles near f in that early generation, then we can improve on this bound and

obtain that overall there is a large number of particles whose rescaled paths stay near

f .

For ν ∈ [0, 1] and u ∈ NνT let

Nu
ν,T (F ) = #{v ∈ NT : u ≤ v, ZTv |[ν,1]∈ F |[ν,1]}.

Fix u ∈ NνT . In the next proposition we show that there is a positive probability

that the number of descendants of u whose rescaled paths lie in a given set is large

enough. We use a second moment method by calculating the expectations with the

Many-to-one and Many-to-two Lemmas.

Proposition 2.12. Let n ∈ N, ν ∈ (0, 1) and f ∈ PLn such that K̃r(f, ν, t) ≥ 0 for all

t ≥ ν. If u ∈ NνT and XT
u (ν) = x, define fu(s) = f(s) + x− f(ν) for s ∈ [0, 1]. Then,

for any u ∈ NνT ,

P
(
Nu
ν,T (Bρ(f

u, 1/n)
)
≥ eK̃r(f,ν,1)T−T/n∣∣FνT ) ≥ 1

4r
exp

(
− 24T (

√
r+1)√
n

)
if T is large enough.

Proof. The Paley-Zygmund inequality states that for any non-negative random variable

X and θ ∈ [0, 1]

P (X ≥ θE[X]) ≥ (1− θ)2E[X]2

E[X2]
.

Taking P to be the conditional probability P
(
· |FνT

)
with X = Nu

ν,T (Bρ(f
u, 1/n)) and

θ = 1/2, we have

P
(
Nu
ν,T (Bρ(f

u, 1/n)) ≥ 1
2E
[
Nu
ν,T (Bρ(f

u, 1/n))|FνT
] ∣∣∣FνT)

≥
E
[
Nu
ν,T (Bρ(f

u, 1/n))|FνT
]2

4E
[
Nu
ν,T (Bρ(fu, 1/n))2|FνT

] . (2.10)

We find a lower bound for the first moment and an upper bound for the second moment.

By Lemma 2.2 and stationarity,

E
[
Nu
ν,T (Bρ(f

u, 1/n))|FνT
]

= erT (1−ν)Q
(
ξT |[ν,1]∈ Bρ(fu, 1/n)|[ν,1]|ξT (ν) = x

)∣∣
x=XT

u (ν)

= erT (1−ν)Q0

(
ξT |[0,1−ν]∈ Bρ(f̂ , 1/n)|[0,1−ν]

)
where ξT branches at rate 2r under Q and f̂(s) = f(s+ ν)− f(ν) for s ∈ [0, 1− ν].

A slight modification of Theorem 2.1 gives that

Q0

(
ξT |[0,1−ν]∈ Bρ(f̂ , 1/n)|[0,1−ν]

)
≥ exp

(
− inf
h∈Bd(f,1/n)

J2r(h, ν, 1)T − T/n
)
≥ exp

(
− J2r(f, ν, 1)T − T/n

)
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if T is large, from which it follows that

E[Nu
ν,T (Bρ(f

u, 1/n))|FνT ]

≥ exp
(
rT (1− ν)− J2r(f, ν, 1)T − T/n

)
= exp

(
K̃r(f, ν, 1)T − T/n

)
(2.11)

when T is large. On the other hand, by Lemma 2.3

E[Nu
ν,T (Bρ(f

u, 1/n))2|FνT ]

= EQ2
x

[
e2rT−3rνT+r(τ∧T )

1{ξT1 |[ν,1], ξT2 |[ν,1]∈Bρ(fu,1/n)|[ν,1]}

∣∣∣τ > νT, ξT1 (ν) = x
]∣∣∣
x=XT

u (ν)
.

Using the construction of Q2 from Section 2.2, and in particular that τ is exponentially

distributed with rate 2r, we get that

EQ2
x

[
e2rT−3rνT+r(τ∧T )

1{ξT1 |[ν,1], ξT2 |[ν,1]∈Bρ(fu,1/n)|[ν,1]}

∣∣∣τ > νT, ξT1 (ν) = x
]∣∣∣
x=XT

u (ν)

= e3rT (1−ν)Q2
(
ξT1 |[ν,1]∈ Bρ(fu, 1/n)|[ν,1]

∣∣∣τ > T, ξT1 (ν) = x
)
e−2rT (1−ν)

+

∫ 1

ν
exp

(
2rT − 3rνT + rsT

)
·Q2

(
ξT1 |[ν,1], ξ

T
2 |[ν,1]∈ Bρ(fu, 1/n)|[ν,1]

∣∣∣τ = sT, ξT1 (ν) = x
)(

2re−2rT (s−ν)
)
ds.

Since f ∈ PLn, it is not difficult to prove that

inf
h∈Bρ(f,1/n)

J2r(h, ν, 1) ≥ J2r(f, ν, 1)− 8
√
r√
n
,

and so by a slight modification of Theorem 2.1

Q2
(
ξT1 |[ν,1]∈ Bρ(fu, 1/n)|[ν,1]

∣∣∣τ > T, ξT1 (ν) = x
)

≤ exp
(
− inf
h∈Bρ(f,1/n)

J2r(h, ν, 1) + T
n

)
≤ exp

(
− J2r(f, ν, 1)T + 8T

√
r√

n
+ T

n

)
if T is large. Similarly,

Q2
(
ξT1 |[ν,1], ξ

T
2 |[ν,1]∈ Bρ(fu, 1/n)|[ν,1]

∣∣∣τ = sT, ξT1 (ν) = x
)

≤ Q2
(
ξT1 |[ν,s]∈ Bρ(fu, 1/n)|[ν,s]

∣∣∣τ = sT, ξT1 (ν) = x
)

· sup
‖w−fu(s)‖<1/n

Q2
(
ξT1 |[s,1]∈ Bρ(fu, 1/n)|[s,1]

∣∣∣τ = sT, ξT1 (u) = w
)2

≤ exp
(
− J2r(f, ν, s)T + 8T

√
r√

n
+ T

n

)
· exp

(
− 2J2r(f, s, 1)T + 16T

√
r√

n
+ 2T

n

)
.
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Putting these estimates together gives that

E[Nu
ν,T (Bρ(f

u, 1/n))2|FνT ]

≤ exp
(
Kr(f, ν, 1)T + 8T

√
r√

n
+ T

n

)
+

∫ 1

ν
2re2rT−νT−rsT · exp

(
− J2r(f, ν, s)T − 2J2r(f, s, 1)T + 24T

√
r√

n
+ 3T

n

)
ds.

Writing

2rT − νT − rsT − J2r(f, ν, s)T − 2J2r(f, s, 1)T = 2K̃r(f, ν, 1)T − K̃r(f, ν, s)T,

we have

E[Nu
ν,T (Bρ(f

u, 1/n))2|FνT ]

≤ exp
(
Kr(f, ν, 1)T + 8T

√
r√

n
+ T

n

)
+

∫ 1

ν
2r exp

(
2K̃r(f, ν, 1)T − K̃r(f, ν, u)T + 24T

√
r√

n
+ 3T

n

)
ds.

Since we assumed that K̃r(f, ν, t) ≥ 0 for all t ≥ ν, this reduces to

E
[
Nu
ν,T (Bρ(f

u, 1/n))2|FνT
]
≤ 4r(1− ν) exp

(
2K̃r(f, ν, 1)T + 24T

√
r√

n
+ 3T

n

)
. (2.12)

Going back to (2.10) and substituting (2.11) and (2.12) gives that

P
(
Nu
ν,T (Bρ(f

u, 1/n)) ≥ 1
2E
[
Nu
ν,T (Bρ(f

u, 1/n))|FνT
] ∣∣∣FνT)

≥ 1

4r(1− ν)
exp

(
− 2T

n −
24T
√
r√

n
− 3T

n

)
,

and this concludes the proof.

Proposition 2.12 ensures that for any u ∈ NνT , with positive probability u has a

large number of descendants in NT whose rescaled path is close to fu. We now focus

on small times, and show that the number of particles near Tf(ν) at time νT is large

with high probability.

In a branching random walk with constant rate the total population grows exponen-

tially fast, but in the spatially-dependent model of Chapter 3 the number of particles

in a fixed generation is not easy to calculate, because the rate depends on the path

that the particles follow up to that time. To add to this difficulty, the system could

have a wild behaviour at small times since, after rescaling, the rate function is dis-

continuous at 0. This will lead to several new propositions in Section 3.5 of Chapter

3. Our strategy consists of building a piecewise linear function which starts equal to

(s/2, s/2) and then gradually changes its drift to f(s′) at time s′ > s. We show that

there are exponentially many particles near (s/2, s/2) for small s, and these produce

many offspring that end near f(s′). By considering paths that stay near this function

up to time s′T we can control the rate function along them and therefore the growth

of newborn particles.

When the rate is constant, the following cruder estimates are enough.
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Proposition 2.13. Let f ∈ PLn and ν ∈ (0, 1). Define

Vν,T (f) = {u ∈ NνT : |XT
u (ν)− f(ν)|< Mν}.

If η < ν and M is large enough, there exist C, k > 0 such that

P(|Vν,T (f)|< eηrT ) ≤ Ce−kT .

Proof. Recall that N(tT ) denotes the number of particles alive at time tT . Then

P(|Vν,T (f)|< eηrT ) ≤ P
(
N(νT ) < eηrT

)
+P
(
∃u ∈ NνT : |XT

u (ν)− f(ν)|> Mν
)
. (2.13)

We show that both the terms on the right-hand side are exponentially small.

Let τ0 = 0 and τn be the birth time of the nth particle in the system and let

σn = τn − τn−1. Then (σn, n ≥ 1) are independent random variables exponentially

distributed with parameter rn. By Markov’s inequality,

P(τn > νT ) = P

(
n∑
k=1

σk > νT

)
≤ E

[
e(r/2)

∑n
k=1 σk

]
e−νrT/2 =

n∏
k=1

(
1− 1

2k

)−1
e−νrT/2.

Using that log(1− x) + x+ x2 ≥ 0 if x ≤ 1/2,

n∏
k=1

(
1− 1

2k

)−1
= exp

(
−

n∑
k=1

log
(

1− 1

2k

))
≤ exp

(
n∑
k=1

( 1

2k
+

1

4k2

))

and since
∑n

k=1(1/k) ≤ log(n) + 1, this is smaller than Cn1/2 for some constant C > 0.

Letting n = beηrT c, we can conclude that

P
(
N(νT ) < eηrT

)
≤ P(τn > νT ) ≤ CeηrT/2−νrT/2,

which is exponentially small when η < ν.

We now consider the second term in (2.13). Since f ∈ PLn, we have f ∈ GM/2 for

some M > 0. By Lemma 2.2,

P
(
∃u ∈ NνT : |XT

u (ν)− f(ν)|> Mν) = erνTQ
(
|ξT (ν)− f(ν)|> Mν

)
≤ erνTQ

(
ξT (ν) > Mν

)
,

where ξ jumps at rate 2r under Q. This is smaller than

erνTEQ[eξ(νT )/2]e−MTν/2 ≤ exp
(
rνT + rνT (1− 1/2)−1 −MTν/2

)
= exp

(
3rνT −MTν/2

)
,

which is exponentially small when M > 6r. Since choosing a larger M does not affect

the argument, this completes the proof.

As we anticipated, we can now combine Propositions 2.12 and 2.13 to show that the

number of particles whose rescaled paths are in F is smaller than exp
(

supf∈F∩GM K̃r(f, 0, 1)
)
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with exponentially small probability.

Proposition 2.14. If F ⊂ E is open and supf∈F Kr(f) 6= 0, then for every ε > 0

there exists a constant κ > 0 such that

lim
T→∞

1

T
logP

(
NT (F ) < exp

(
sup

g∈F∩GM
K̃r(g, 0, 1)T − εT

))
≤ −κ.

Proof. Take ε > 0. Since Kr(f) ∈ {−∞} ∪ [0,∞), if supf∈F Kr(f) ≤ 0 then there

is nothing to prove. We may therefore assume that there exists f ∈ F such that

Kr(f) > 0. In this case, since F is open we can choose ε′ ∈ (0, ε) such that Bd(f, ε
′) ⊂ F

and K̃r(f, 0, 1) ≥ supg∈F∩GM K̃r(g, 0, 1)− ε′, so

P

(
NT (F ) < exp

(
sup

g∈F∩GM
K̃r(g, 0, 1)T − 3εT

))
≤ P

(
NT (Bd(f, ε

′)) < eK̃r(f,0,1)T−2εT
)
.

(2.14)

Denote by fn ∈ PLn the linear interpolation of f . Then fn ∈ Bd(f, ε′/2) if n is large.

Furthermore, since f is right-continuous, if ν is small enough then f is continuous on

[0, ν) and K̃r(f, 0, ν) ≤ rν, so letting ν = 1/n1/8 we have that K̃r(f, 0, ν) < ε if n is

large. We also have that K̃r(fn, a, b) ≥ K̃r(f, a, b) for any a, b ∈ [0, 1], which implies

that K̃r(fn, ν, 1) ≥ K̃r(f, ν, 1) ≥ K̃r(f, 0, 1)− ε and Kr(fn) > 0.

Since Bρ(fn, ε
′/2) ⊆ Bd(fn, ε′/2), it follows that (2.14) is smaller than

P
(
NT (Bρ(fn, ε

′/2)) < eK̃r(fn,ν,1)T−εT
)
.

Since K̃r(fn) > 0, we have that fn ∈ GM for some M > 0.

Recall that Vν,T (fn) = {u ∈ NνT : |XT
u (ν) − fn(ν)|< Mν}. If u ∈ Vν,T (fn) and

XT
u (ν) = x, define fun (s) = fn(s) + x− fn(ν) for s ∈ [0, 1] and note that K̃r(f

u
n , ν, 1) =

K̃r(fn, ν, 1). Since |x − fn(ν)|< 2Mν, conditioning on the system at time νT , when

2Mν < ε′/4

P
(
NT (Bρ(fn, ε

′/2)) < eK̃r(fn,ν,1)T−εT
)

= E
[
P
(
NT (Bρ(fn, ε

′/2)) < eK̃r(fn,ν,1)T−εT
∣∣∣∣FνT)]

≤ E

 ∏
u∈Vν,T (fn)

P
(
Nu
ν,T (Bρ(f

u
n , ε
′/4)) < eK̃r(fn,ν,1)T−εT

∣∣∣∣FνT)
 .

When n is large, by Proposition 2.12, for each u ∈ Vν,T (fn)

P
(
Nu
ν,T (Bρ(f

u
n , ε
′/4)) < eK̃r(fn,ν,1)T−εT

∣∣∣∣FνT) ≤ 1− 1

4r
exp

(
− 24T (

√
r+1)√
n

)
if T is large enough.

With ν = 1/n1/8 and η = 1/n1/4, Lemma 2.13 ensures that if M is large enough,
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there exist C, k > 0 such that P(|Vν,T (fn)|≤ erT/n1/4
) ≤ Ce−kT , so

P
(
NT (Bρ(fn, ε

′/2)) < eK̃r(fn,ν,1)T−εT
)
≤ E

 ∏
u∈Vν,T (f)

(
1− 1

4r
exp

(
− 24T (

√
r+1)√
n

))
≤
(

1− 1

4r
exp

(
− 24T (

√
r+1)√
n

))erT/n1/4
+ Ce−kT .

Using that 1− x ≤ e−x for all x,

P
(
NT (Bρ(fn, ε

′/2)) < eK̃r(fn,ν,1)T−εT
)
≤ exp

(
− 1

4r exp
(
rT
n1/4 −

24T (
√
r+1)√
n

))
+ Ce−kT ,

from which the statement follows.

To conclude the proof of the lower bound of Theorem 2.5 we can use similar ar-

guments to those used for the upper bound: we can extend Proposition 2.14 to all

large times simultaneously by dealing with technicalities about the rescaling and then

applying the Borel-Cantelli Lemma. These details are similar to those in Section 3.3

of Chapter 3, so we omit them here.
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Chapter 3

A shape-dependent fragmentation process

3.1. The main theorem

In this chapter we consider the spatial fragmentation model defined in Chapter 1 and its

equivalent branching random walk description. We recall that this involves a branching

random walk in R2 starting from (0, 0) with exponentially distributed jumps, where

each particle, when at position (x, y) with x, y ≥ 0, branches at rate

R(x, y) =
x+ 1

y + 1
∨ y + 1

x+ 1
.

Let U be a uniform random variable on (0, 1). When a particle branches, it has two

children at positions (x− logU , y) and (x− log(1− U), y) with probability

P (x, y) =
y + 1

2(x+ 1)
1x≥y +

(
1− x+ 1

2(y + 1)

)
1x<y,

or at positions (x, y − logU) and (x, y − log(1− U)) with probability 1− P (x, y).

We let RX(x, y) = R(x, y)P (x, y) and RY (x, y) = R(x, y)(1 − P (x, y)). Then RX
and RY denote the rates at which a particle at position (x, y) moves in the first spatial

dimension, or the second, respectively.

Our main theorem aims to quantify how many particles have paths which, when

rescaled appropriately, fall within a given subset of E2, where E is the set of non-

decreasing càdlàg functions f : [0, 1]→ R with f(0) = 0.

Set f ′(s) =∞ if f ∈ E is not differentiable at the point s ∈ [0, 1]. Recall that with

the notation introduced in Chapter 2, we can write any function f ∈ E as f = f̃ + f̂

where f̃ is absolutely continuous and f̂ is singular.

Since we are interested in rescaled paths for large times, R and P are essentially

governed by the ratios x/y and y/x. We define the functions R∗ : [0,∞)2 → [0,∞] and

P ∗ : [0,∞)2 → [0, 1] by

R∗(x, y) :=

{
x
y ∨

y
x if x > 0 or y > 0

1 if x = y = 0

and

P ∗(x, y) :=

{
y
2x1x≥y +

(
1− x

2y

)
1x<y if x > 0 or y > 0

1/2 if x = y = 0.

Although our splitting rule is described by the functions R and P , which are continuous

at 0, at large times the constant terms in those functions become insignificant and the

behaviour when the system is rescaled appropriately is captured instead by R∗ and P ∗.

We let

R∗X(x, y) :=

{
R∗(x, y)P ∗(x, y) if y > 0

1/2 if y = 0
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and

R∗Y (x, y) :=

{
R∗(x, y)(1− P ∗(x, y)) if x > 0

1/2 if x = 0.

Suppose that f = (fX , fY ) ∈ E2 and 0 ≤ a ≤ b ≤ 1. Define the functionals

I(f, a, b) =

∫ b

a

(
21/2R∗X(f(s))1/2− f ′X(s)1/2

)2
ds+

∫ b

a

(
21/2R∗Y (f(s))1/2− f ′Y (s)1/2

)2
ds,

J(f, a, b) = I(f, a, b) + f̂X(b)− f̂X(a) + f̂Y (b)− f̂Y (a)

and

K̃(f, a, b) =

{∫ b
a R
∗(f(s))ds− J(f, a, b) if J(f, a, b) <∞;

−∞ otherwise.

Note that any f ∈ E2 is necessarily continuous at 0, and therefore if limt→0 K̃(f, 0, t) 6=
−∞ then K̃(f, 0, t) is differentiable (in t) at 0. If limt→0 K̃(f, 0, t) = −∞ then write
d
dtK̃(f, 0, t)|t=0 = −∞. Define

K(f) =


K̃(f, 0, 1) if d

dtK̃(f, 0, t)|t=0 > 0 and K̃(f, 0, s) > 0 ∀s ≤ 1;

−∞ if ∃s ≤ 1 such that K̃(f, 0, s) < 0;

0 otherwise.

These represent the behaviour of RX(x, y) and RY (x, y) at large times. The functional

K̃(f, 0, 1) will be our expected growth rate, in that the expected number of particles at

time T whose paths, when rescaled by a factor T , are “near” f should look something

like eK̃(f,0,1)T . However, the actual number of particles behaving in this way will only

look like eK̃(f,0,1)T if K̃(f, 0, θ) > 0 for all θ ∈ [0, 1]. If there exists θ ∈ [0, 1] such that

K̃(f, 0, θ) < 0 then (with high probability) there will be no particles whose T -rescaled

paths look like f , essentially because this point on f acts as a bottleneck; at this point,

it is too difficult for particles to follow f , and the population near f dies out.

In order to make this discussion precise we need to specify a topology on our

space of functions E2. As we discussed in Chapter 2, since the jumps in our process

are exponentially distributed, the Skorokhod metric is not suitable, and we therefore

introduce the Lévy metric on E as defined in (2.2). In an abuse of notation, we will

also write d to mean the product metric on E2 defined by d((fX , fY ), (gX , gY )) =

max{d(fX , gX), d(fY , gY )}.
We recall some notation. For T ≥ 0, let NT be the set of particles that are alive at

time T . For u ∈ NT and t ≤ T , let Zu(t) = (Xu(t), Yu(t)) be the position of the unique

ancestor of u in Nt. For u ∈ NT and s ∈ [0, 1], write

ZTu (s) = Zu(sT )/T ;

we call (ZTu (s), s ∈ [0, 1]) the T -rescaled path of u. For a given set of functions F (we

will discuss the technicalities on the function spaces later), define

NT (F ) = #{u ∈ NT : ZTu ∈ F},

the number of particles at time T whose T -rescaled paths have remained within F .

Throughout the chapter, we use the convention that inf ∅ = +∞ and sup ∅ = −∞.
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Theorem 3.1. If F ⊂ E2 is closed and supf∈F K(f) 6= 0, then

lim sup
T→∞

1

T
logNT (F ) ≤ sup

f∈F
K(f) almost surely,

and if F ⊂ E2 is open and supf∈F K(f) 6= 0, then

lim inf
T→∞

1

T
logNT (F ) ≥ sup

f∈F
K(f) almost surely.

The case when supf∈F K(f) = 0 is extremely delicate. If, for some function f , we

have K(f) = 0 then at some point along the path f , the population remaining near

f is “critical”, in the sense of a critical branching process. When supf∈F K(f) = 0,

this means that amongst all paths in F , the easiest path for particles to follow is a

critical one. In general, critical branching processes are significantly more challenging

to analyse than non-critical processes, and our situation is made more complex by

the inhomogeneity of our branching system. Indeed, we do not even know if there

are open sets F ⊂ E2 that satisfy supf∈F K(f) = 0. If not, then the condition that

supf∈F K(f) 6= 0 could essentially be removed, subject to a slight alteration to the

definition of K(f).

3.1.1 Heuristics

At a basic level, our theorem says that the number of particles whose T -rescaled paths

remain close to a function f is roughly exp(K(f)T ). The growth rate K(f) consists of

two parts: the growth of the population along the path, which is simply
∫ 1

0 R
∗(f(s))ds,

and the cost of a typical particle following the path, which is J(f, 0, 1). However, if

the cumulative cost is ever larger than the cumulative growth at any point along the

path—that is, if K̃(f, 0, s) is ever negative—then particles are unable to follow f and

therefore K(f) = −∞.

The main strategy for the proof is to break time up into small intervals. On each

small interval, we know roughly the location and gradient of f and the rate R(f(s)),

so we can control both the growth and the cost of following f . We bound the largest

and smallest values that R(z) can take when z is within a small ball around f(s), and

use a coupling to trap a typical particle in our process between two compound Poisson

processes that have jump rates corresponding to these maximum and minimum values

of R(z). Fairly standard first and second moment bounds then allow us to translate

the behaviour of this typical particle into estimates for the whole branching system.

As mentioned in the introduction, this simple explanation disguises a highly techni-

cally demanding proof. One of the difficulties that does not usually appear in work on

branching structures is the behaviour at early times. We cannot do a standard approach

as the one we illustrated in Chapter 2, instead we are forced to use a discrete-time mo-

ment bound to show that there are many particles near one particular path—a straight

line corresponding to rectangles that are roughly square—at small times, and then

show that this collection of particles can “feed” a population at future times that is

easier to control.

Another non-standard element in our proof is the appearance of the Lévy metric.

Since our particles take jumps whose sizes are exponentially distributed, there are

(many) particles whose T -rescaled paths are not continuous. Indeed, every particle

branches at rate at least 1, so at time tT there are at least of order etT particles, and

the probability that one particle performs of a jump larger than aT—which corresponds
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to size a in the rescaled picture—is e−aT . Thus we expect to see many such jumps when

t > a. (And since particles can branch faster than rate 1, we will in fact see such jumps

significantly earlier.) In order to bound the total number of particles from above, we

therefore need to control particles whose paths are discontinuous; hence the appearance

of the Lévy metric.

3.1.2 Growth rate in expectation

A relatively minor modification of our proof of Theorem 3.1 would yield the growth

rate in expectation mentioned after the definition of K(f), namely that if F ⊂ E2 is

closed then

lim sup
T→∞

1

T
logE[NT (F )] ≤ sup

f∈F
K̃(f, 0, 1) (3.1)

and if F ⊂ E2 is open then

lim inf
T→∞

1

T
logE[NT (F )] ≥ sup

f∈F
K̃(f, 0, 1). (3.2)

In particular one may note that there are many sets F such that supf∈F ◦ K̃(f, 0, 1) > 0,

so the expected number of particles whose rescaled paths fall within F is exponentially

large, and yet supf∈F̄ K(f) = −∞, so almost surely no particles have rescaled paths

that fall within F .

We do not include full proofs of (3.1) and (3.2) here, although they are significantly

simpler than the proofs of the upper and lower bounds in Theorem 3.1. We will sketch

the main points of the arguments in Sections 3.2.3 and 3.3, shortly after the respective

proofs of the upper and lower bounds in Theorem 3.1.

3.1.3 Layout of the chapter

We begin, in Sections 3.2 and 3.3, with outlines of the proofs of the upper and lower

bounds in Theorem 3.1 respectively. In these sections we state several results that are

needed for the proof of the main theorem without proving them. The proofs of these

intermediate results are then given in later sections.

In Section 3.4, we give a full construction of our system in terms of a marked binary

tree. This discrete setting is useful for decoupling some of the dependency structure

between the jump times and jump sizes, and allows us to show that particles remain

within some compact set with high probability, which will be an important ingredient,

especially for the upper bound in Theorem 3.1.

In Section 3.5 we aim to control the system at small times, which is a difficult task

partly due to the discontinuity of R∗ at 0. We again use the discrete setup described

in Section 3.4, and use moment estimates that take advantage of the fact that our

particles prefer to split along their longest edge. This work is used for the proof of the

lower bound in Theorem 3.1.

One of the main tools in our proof is a coupling between compound Poisson pro-

cesses, which we describe in Section 3.6 and then apply to give upper and lower bounds

on the probability that a typical particle remains near a given function.

In Section 3.7 we put many of the previous results together, move from lattice times

to continuous time, and complete the final details of the proof of the upper bound in

Theorem 3.1.

In Appendix 3.A we give deterministic bounds that relate the maximum and min-

imum of R on small balls to the value of R∗ at the centre of the ball, and therefore
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allow us to link the probabilistic estimates obtained with the coupling in Section 3.6

to our growth rate K̃.

Finally, in Appendix 3.B we carry out some technical work, ensuring that our state

space and our growth rate behave sensibly.

3.2. Proof outline for the upper bound in Theorem 3.1

Since the proof of Theorem 3.1 is rather long, we break it into upper and lower bounds.

In this section we state a series of results that together enable us to complete the upper

bound. We will then prove those results in later sections.

3.2.1 Three probabilistic ingredients

The first step in our proof of the upper bound in Theorem 3.1 is to rule out certain

paths that it is difficult for particles to follow, thereby reducing the paths of interest

to a compact set. We define, for M > 1,

GM = {f ∈ E : s/M ≤ f(s) ≤Ms ∀s ∈ [0, 1]} ⊂ E.

If f ∈ G2
M then we say that f is “M -good”. We note that if f is M -good then

R∗X(f(s)) ≤M2 for all s ∈ [0, 1] and similarly for R∗Y .

We would like to say that the rescaled paths of all particles fall within G2
M for

sufficiently large M , but there is a complication near s = 0 in that particles will not

jump immediately and therefore their paths will fall, however briefly, outside G2
M .

Expanding G2
M by any fixed distance ε > 0 would not allow us to control the jump

rate sufficiently well, and we instead define, for M > 0 and T > 1,

GM,T :=
{
f ∈ E : s/M − 2T−2/3 ≤ f(s) ≤M(s+ 2T−2/3) ∀s ∈ [0, 1]

}
.

If f ∈ G2
M,T then we say that f is “(M,T )-good”. We can then show that for large M

all particles are (M,T )-good with high probability as T → ∞. We note here that the

choice of −2/3 is not essential; we could choose any power of T in (−1,−1/2).

Lemma 3.2. There exist M0 > 1 and δ0 > 0 such that for any sufficiently large T ,

P
(
∃v ∈ NT : ZTv 6∈ G2

M0,T

)
≤ e−δ0T 1/3

.

We will prove this lemma in Section 3.4.

Next we give a version of the many-to-one formula, which translates expectations

over all particles in our system into calculations involving just one particle. For z0 ∈
[0,∞)2, write Qz0 for a probability measure under which ξt is a Markov process living

in R2, such that

• ξ0 = z0;

• when the process is in state z, jumps occur at rate 2R(z);

• when a jump occurs from state z, it is of the form (e, 0) with probability P (z)

and (0, e) with probability 1 − P (z), where e is an independent exponentially-

distributed random variable with parameter 1.
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In other words, the process under Qz0 behaves like a single particle under Pz0 ex-

cept that it jumps at twice the rate. We write Qz0 both for the measure and for its

corresponding expectation operator. We will often take z0 = 0, and in this case we

sometimes write Q rather than Q0.

The measure Qz0 described above is precisely the measure Q1
z0 that appears in [32].

The following result is [32, Lemma 1] in the case of our model when k = 1.

Lemma 3.3 (Many-to-one, Lemma 1 of [32] with k = 1). Suppose that z ∈ R2 and

t ≥ 0. For any measurable function f : R2 → R,

Ez

[∑
u∈Nt

f(Zu(t))

]
= Qz

[
f(ξt)e

∫ t
0 R(ξs)ds

]
.

This, combined with Markov’s inequality, allows us to give upper bounds on the

number of particles whose paths fall within a particular set F simply by bounding R(f)

over all f ∈ F and then estimating the probability that ξ falls within F . Estimating

this probability will be our next task, but our estimates will not be exactly in terms

of the quantities R∗X and R∗Y seen in Theorem 3.1. Instead they will involve taking

the worst and best possible values of RX and RY over small balls about appropriately

chosen functions, during a small time interval. We will need several definitions. The

reader may like to think of F = B(f, ε) for some suitably nice function f and small

ε > 0.

For a non-empty interval I ⊂ [0, 1], F ⊂ E2 and T ≥ 1, define

R−X(I, F, T ) = inf
{
RX(Tg(s)) : s ∈ I, g ∈ F

}
and

R+
X(I, F, T ) = sup

{
RX(Tg(s)) : s ∈ I, g ∈ F

}
,

and similarly for R−Y (I, F, T ) and R+
Y (I, F, T ). These correspond to the maximal and

minimal possible jump rates over the interval I for particles whose T -rescaled paths

fall within F . For s ∈ [0, 1], we also let

x−(s, F ) = inf{gX(s) : g ∈ F}, x+(s, F ) = sup{gX(s) : g ∈ F},

and similarly for y−(s, F ) and y+(s, F ).

Writing |I| for the length of I and I− and I+ for the infimum and supremum of

I respectively, say that we are in the “X− case” if 2R−X(I, F, T )|I| > x+(I+, F ) −
x−(I−, F ); and in the “X+ case” if x−(I+, F ) − x+(I−, F ) > 2R+

X(I, F, T )|I|. Note

that these two cases are mutually exclusive, and roughly correspond to whether the

drift of the process on the interval I multiplied by the length of the interval is larger

or smaller than the distance we would like it to travel. Note also that it is possible to

be in neither case. Define

E+
X(I, F, T ) =


(√

2R−X(I, F, T )|I| −
√
x+(I+, F )− x−(I−, F )

)2
in the X− case;(√

2R+
X(I, F, T )|I| −

√
x−(I+, F )− x+(I−, F )

)2
in the X+ case;

0 otherwise.

Similarly define E+
Y (I, F, T ). We note that for a single function f ∈ E2, the quantity

E+
X([a, b], {f}, T ) + E+

Y ([a, b], {f}, T ) should be an approximation to—but a little bit
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bigger than—the functional I(f, a, b) seen in Section 3.1. We similarly define a quantity

that should be an approximation to I(f, a, b) from below, namely

E−X(I, F, T ) =


(√

2R+
X(I, F, T )|I| −

√
x−(I+, F )− x+(I−, F )

)2
in the X− case;(√

2R−X(I, F, T )|I| −
√
x+(I+, F )− x−(I−, F )

)2
in the X+ case;

0 otherwise.

Write ‖z1 − z2‖ = max{|x1 − x2|, |y1 − y2|} when zi = (xi, yi) ∈ R2 for i = 1, 2. To

help us to break the time interval [0, 1] into smaller chunks, for n ∈ N we define a new

metric ∆n on E2 by

∆n(f, g) := max {‖f(i/n)− g(i/n)‖ : i = 0, . . . , n} .

For T > 1, n ∈ N, M > 1 and f ∈ E2, we let

ΓM,T (f, n) = B∆n(f, 1/n2) ∩Bd(f, 1/n) ∩G2
M,T

and for j ∈ {0, 1, . . . , n− 1}, let Ij = [j/n, (j + 1)/n].

We also need to extend our rescaling notation to ξ in the natural way. Write ξT for

the rescaled process (ξ(sT )/T, s ∈ [0, 1]), and for I ⊂ [0, 1] write ξT |I for the restriction

to I, (ξ(sT )/T, s ∈ I). If F ⊂ E2 and a function f is defined on a subinterval I of

[0, 1]—for example ξT |[0,θ] with I = [0, θ]—then say that f ∈ F |I if there exists g ∈ F
such that f(s) = g(s) for all s ∈ I.

Proposition 3.4. Suppose that f ∈ E2, n ∈ N, T > 1 and M > 1. Then for any

θ ∈ (0, 1], i ∈ {0, 1, . . . , bθnc − 1}, and z such that ‖z − f(i/n)‖ < 1/n2,

Q
(
ξT |[i/n,θ] ∈ ΓM,T (f, n)

∣∣
[i/n,θ]

∣∣ ξTi/n = z
)

≤ exp

(
− T

bθnc−1∑
j=i

(
E+
X(Ij ,ΓM,T (f, n), T ) + E+

Y (Ij ,ΓM,T (f, n), T )
))
.

The proof of Proposition 3.4 will be the most interesting part of this chapter, and

involves coupling the process ξ with two other processes, which—as long as ξ remains

within ΓM,T (f, n)—will stay above and below ξ respectively. We carry out this part of

the argument in Section 3.6.

3.2.2 Deterministic bounds

The three results Lemma 3.2, Lemma 3.3 and Proposition 3.4 form the main part of our

argument, and contain all of the probability required for the upper bound in Theorem

3.1.

Our next task is to translate the quantities E+
X and E+

Y into the more palatable

rate functions seen in our main theorem. The deterministic arguments required are not

particularly interesting. It will sometimes be useful to note that if
∫ b
a R
∗(f(s))ds <∞,
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then K̃(f, a, b) has the following alternative representation:

K̃(f, a, b) = −
∫ b

a
R∗(f(s))ds+ 2

√
2

∫ b

a

√
R∗X(f(s))f ′X(s)ds

+ 2
√

2

∫ b

a

√
R∗Y (f(s))f ′Y (s)ds− fX(b) + fX(a)− fY (b) + fY (a). (3.3)

This can be seen by expanding out the quadratic terms in the definition of I(f, a, b)

and simplifying.

Let PLn be the subset of functions in E that are linear on each interval [i/n, (i+1)/n]

for all i = 0, . . . , n− 1 and continuous on [0, 1].

Proposition 3.5. Suppose that θ ∈ (0, 1], M > 1, n ≥ 2M and f ∈ PL2
n ∩G2

M . Then

for any k ∈ {d
√
ne, . . . , bθnc − 1},

bθnc−1∑
j=k

E+
X(Ij ,ΓM,T (f, n), T ) ≥

∫ bθnc/n
k/n

(√
2R∗X(f(s))−

√
f ′X(s)

)2
ds−O

(M4

n1/4
+
M3n

T 1/2

)
.

We do not aim to give best possible bounds on the error term. Similarly for the

sum on the left-hand side, small values of j give rise to larger errors, so there should be

some cut-off, but the choice of d
√
ne is convenient rather than optimal. We will prove

Proposition 3.5 in Appendix 3.A.1.

We will also need the following bound to control the exp(
∫ t

0 R(ξs)ds) term seen in

Lemma 3.3.

Lemma 3.6. Suppose that θ ∈ (0, 1], M > 1, n ≥ 2M , T 2/3 ≥ 3Mn1/2, f ∈ G2
M and

g ∈ ΓM,T (f, n). Then

∫ θ

0
R(Tg(s))ds ≤

∫ bθnc/n
0

R∗(f(s))ds+ η(M,n, T )

and for any k ∈ {d
√
ne, d
√
ne+ 1, . . . , bθnc},∫ bθnc/n

k/n
R∗(f(s))ds−η(M,n, T ) ≤

∫ θ

k/n
R(Tg(s))ds ≤

∫ bθnc/n
k/n

R∗(f(s))ds+η(M,n, T )

where

η(M,n, T ) = O
(M4

n1/2
+
M3n

T 1/3

)
.

This result will be proved in Appendix 3.A.2. Again we make little effort to make

η(M,n, T ) the best possible bound.

3.2.3 Completing the proof of the upper bound in Theorem 3.1

Recall that if F ⊂ E2, and g : [0, θ] → R2, we say that g ∈ F |[0,θ] if there exists a

function h ∈ F such that h(u) = g(u) for all u ∈ [0, θ]. We also generalise our rescaling

notation slightly: for t ∈ [0, T ], v ∈ Nt and s ∈ [0, t/T ], write

ZTv (s) = Zv(sT )/T ;
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again we call (ZTv (s), s ∈ [0, t/T ]) the T -rescaled path of v (previously this was only

defined when t = T ). We can then define

NT (F, θ) = #{v ∈ NθT : ZTv ∈ F |[0,θ]},

the number of particles at time θT whose T -rescaled paths have remained within F up

to time θ.

Proposition 3.7. Suppose that M > 1, θ ∈ (0, 1], n ≥ 2M and T ≥ 6M3/2n3/4. Then

for any g ∈ G2
M ∩ PL2

n and κ > 0,

P
(
NT (ΓM,T (g, n), θ) ≥ κ

)
≤ 1

κ
exp

(
TK̃

(
g, 0,

bθnc
n

)
+O

(M4T

n1/4
+M3nT 2/3

))
.

We will prove Proposition 3.7, which forms the heart of the argument to prove the

upper bound in Theorem 3.1, in Section 3.7.2.

Our next result applies Proposition 3.7 to show that for F ⊂ E2, at any large time

T , the number of particles whose T -rescaled paths fall within F is unlikely to be much

larger than exp
(

supf∈F K̃(f, 0, 1)
)
. Recall the definition of M0 and δ0 from Lemma

3.2.

Proposition 3.8. Suppose that F ⊂ E2 is closed and M ≥ 4M0. Then for any ε > 0,

lim
T→∞

1

T 1/3
logP

(
NT (F ) ≥ exp

(
T sup
f∈F∩G2

M

K̃(f, 0, 1) + Tε
))
≤ −δ0.

The proof of this result will use Lemma 3.2 together with some technical lemmas to

ensure that we can cover F with finitely many small balls around piecewise linear

functions, and then apply Proposition 3.7. The proof is also in Section 3.7.2.

There are many paths f that satisfy K(f) = −∞ but K̃(f, 0, 1) > 0. These are

paths where there exists θ ∈ (0, 1) such that K̃(f, 0, θ) < 0, and therefore the population

of particles whose rescaled paths are near f becomes extinct around time θT . Since a

population cannot recover once it becomes extinct, no particles follow such paths up

to time T even though the expected growth by the end of the path, K̃(f, 0, 1), can be

positive. For sets F that only contain such paths, Proposition 3.8 does not provide a

useful bound, and we therefore need a slightly different approach.

Lemma 3.9. If F ⊂ E2 is closed and supf∈F K(f) = −∞, then

lim
T→∞

1

T 1/3
logP

(
NT (F ) ≥ 1

)
≤ −δ0.

The proof of Lemma 3.9 is in Section 3.7.3. We can then upgrade Proposition 3.8 and

Lemma 3.9, which are both statements about a particular large time T , to get the same

result at all large times simultaneously.

Proposition 3.10. Suppose that F ⊂ E2 is closed and M ≥ 4M0. Then

lim sup
T→∞

1

T
logNT (F ) ≤ sup

f∈F∩G2
M

K̃(f, 0, 1)

almost surely. If moreover supf∈F K(f) = −∞, then lim supT→∞NT (F ) = 0 almost

surely.
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The proof of this result will appear in Section 3.7.4. We can now complete the proof

of the upper bound in our main theorem.

Proof of Theorem 3.1: upper bound. Since K(f) ∈ {−∞}∪ [0,∞), if supf∈F K(f) < 0

then we must have supf∈F K(f) = −∞. In this case the second part of Propo-

sition 3.10 tells us that almost surely, NT (F ) = 0 for all large T , and therefore

limT→∞ logNT (F ) = −∞. On the other hand if supf∈F K(f) > 0 then we have

sup
f∈F

K(f) = sup
f∈F

K̃(f, 0, 1),

and then applying the first part of Proposition 3.10 tells us that

lim sup
T→∞

1

T
logNT (F ) ≤ sup

f∈F∩G2
M

K̃(f, 0, 1) ≤ sup
f∈F

K̃(f, 0, 1) = sup
f∈F

K(f)

almost surely, and the proof is complete.

Sketch proof of (3.1). The upper bound in expectation (3.1) follows more or less di-

rectly from estimates derived above. In particular, much of the proof of Proposition 3.7

involves bounding E[NT (F )] from above when F is a small ball around a suitably nice

function, and then applying Markov’s inequality. From there it is a relatively simple

task, similarly to the proof of Proposition 3.8, to apply Lemma 3.2 to reduce F to a

compact set, Lemma 3.36 to cover this set with finitely many balls around suitably nice

functions, and Corollary 3.38 to check that the resulting bound does not significantly

overshoot (3.1).

3.3. Proof outline for the lower bound in Theorem 3.1

Let ρ be the metric defined by

ρ(f, g) = sup
s∈[0,1]

‖f(s)− g(s)‖ = sup
s∈[0,1]

{
|fX(s)− gX(s)| ∨ |fY (s)− gY (s)|

}
.

Rather than the set ΓM,T (f, n) seen in the proof of the upper bound, for the lower

bound we will instead often use the set

ΛM,T (f, n) = Bρ(f, 1/n
2) ∩G2

M,T .

For F ⊂ E2 and T > 0, recall that

NT (F ) = #{u ∈ NT : ZTu ∈ F},

and for t ∈ [0, 1] and u ∈ NtT , define

Nu
t,T (F ) = #{v ∈ NT : u ≤ v, ZTv |[t,1] ∈ F |[t,1]}. (3.4)

Also let (Ft, t ≥ 0) be the natural filtration for the process.

The main part of our proof relies on a standard second moment argument, and

Propositions 3.11 and 3.12 give the first and second moment bounds necessary to carry

out that argument. However, this strategy on its own cannot give strong enough
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estimates to be able to prove an almost sure statement, as required for Theorem 3.1.

We therefore give bounds conditionally given FkT/n for
√
n < k � n, with the aim of

using the branching structure at time kT/n to increase the accuracy of our estimates.

Proposition 3.11. Suppose that M > 1, n ≥ 6M ,
√
n ≤ k ≤ n, T ≥ 27M3/2n9/2

and f ∈ PL2
n ∩G2

M . Suppose also that u ∈ NkT/n satisfies ‖ZTu (k/n)− f(k/n)‖ ≤ 1
2n2 .

Then

E
[
Nu
k/n,T (Λ3M,T (f, n))

∣∣FkT/n] ≥ exp
(
TK̃(f, k/n, 1)−O

(M4T

n1/4
+M3nT 2/3

))
.

We will prove Proposition 3.11 in Section 3.3.1.

Proposition 3.12. Suppose that M > 1, n ≥ 6M ,
√
n ≤ k ≤ n, T ≥ 27M3/2n9/2 and

f ∈ PL2
n∩G2

M . Suppose also that u ∈ NkT/n satisfies ‖ZTu (k/n)−f(k/n)‖ < 1
n2 . Then

E
[
Nu
k/n,T (Λ3M,T (f, n))2

∣∣FkT/n]
≤
∫ T

kT/n
e−TK̃(f,k/n,t/T )dt · 12M2n exp

(
2TK̃(f, k/n, 1) +O

(M4T

n1/4
+M3nT 2/3

))
+ exp

(
TK̃(f, k/n, 1) +O

(M4T

n1/4
+M3nT 2/3

))
.

We will prove Proposition 3.12 in Section 3.3.2. We now use a standard second

moment method to turn Propositions 3.11 and 3.12 into a lower bound on the prob-

ability that the number of particles whose rescaled paths remain near f is roughly

K̃(f, k/n, 1)T , again conditionally on FkT/n.

Corollary 3.13. Suppose that M > 1, n ≥ 6M , k ≥
√
n, T ≥ 27M3/2n9/2 and

f ∈ PL2
n ∩G2

M . Suppose also that u ∈ NkT/n satisfies ‖ZTu (k/n)− f(k/n)‖ ≤ 1
2n2 , and

that K̃(f, k/n, t) ≥ 0 for all t ≥ k/n. Then

P
(
Nu
k/n,T (Λ3M,T (f, n)) ≥ eTK̃(f,k/n,1)−O(M4T/n1/4+M3nT 2/3)

∣∣FkT/n)
≥ e−O(M4T/n1/4+M3nT 2/3).

Proof. The Paley-Zygmund inequality says that, for any non-negative random variable

X and θ ∈ [0, 1],

P
(
X ≥ θE[X]

)
≥ (1− θ)2E[X]2

E[X2]
.

Taking P to be the conditional probability P( · | FkT/n) with X = Nu
k/n,T (Λ3M,T (f, n))

and θ = 1/2, we have

P
(
Nu
k/n,T (Λ3M,T (f, n)) ≥ (1/2)E

[
Nu
k/n,T (Λ3M,T (f, n))

∣∣FkT/n] ∣∣FkT/n)
≥

E
[
Nu
k/n,T (Λ3M,T (f, n))

∣∣FkT/n]2
4E
[
Nu
k/n,T (Λ3M,T (f, n))2

∣∣FkT/n] . (3.5)

Proposition 3.11 tells us that

E
[
Nu
k/n,T (Λ3M,T (f, n))

∣∣FkT/n] ≥ exp
(
TK̃(f, k/n, 1)−O

(M4T

n1/4
+M3nT 2/3

))
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and Proposition 3.12 gives

E
[
Nu
k/n,T (Λ3M,T (f, n))2

∣∣FkT/n]
≤
∫ T

kT/n
e−TK̃(f,k/n,t/T )dt · 12M2n exp

(
2TK̃(f, k/n, 1) +O

(M4T

n1/4
+M3nT 2/3

))
+ exp

(
TK̃(f, k/n, 1) +O

(M4T

n1/4
+M3nT 2/3

))
.

and since K̃(f, k/n, t) ≥ 0 for all t ≥ k/n, this reduces to

E
[
Nu
k/n,T (Λ3M,T (f, n))2

∣∣FkT/n]
≤ 12M2nT exp

(
2TK̃(f, k/n, 1) +O

(M4T

n1/4
+M3nT 2/3

))
= exp

(
2TK̃(f, k/n, 1) +O

(M4T

n1/4
+M3nT 2/3

))
.

Substituting these estimates into (3.5) gives the result.

By Corollary 3.13, each particle near Tf(k/n) at time kT/n has a not-too-small

probability of having roughly exp(K̃(f, k/n, 1)T ) descendants whose rescaled paths

remain near f up to time 1. If we can ensure that there is a reasonably large number of

particles near Tf(k/n) at time kT/n, then subject to some technicalities (for example

Corollary 3.13 assumes that f is piecewise linear, whereas there is no such condition in

Theorem 3.1) we will be able to prove the lower bound in Theorem 3.1.

The discontinuity of R∗ at 0 makes controlling the growth of the system at small

times difficult. The first few particles in the system can have wildly different values of

R in different realisations of the process, and it is not a priori clear that this cannot

have a large effect on the long-term evolution of the system. Our method for showing

that particles do in fact spread out in a predictable way is the following. First we show

that there are many particles near the line (s/2, s/2) at time s, for suitable values of

s. The idea is that our jump distribution prefers to create “almost square” rectangles

(since rectangles are more likely to break along their longest side) and therefore we

should see many particles near (s/2, s/2). However, since particles away from this line

branch and jump more quickly, we use a discrete-time argument to keep control of the

dependence between the jump locations and the jump times. A rough estimate using

moments in discrete time can then be translated back into continuous time, giving the

following result.

Proposition 3.14. Define

V ′n,T = {u ∈ Ndn7/8eT/n : ‖Zu(s)− (s/2, s/2)‖ ≤ T
2n2 ∀s ≤ dn7/8eT/n}.

There exists a finite constant C such that for any T ≥ Cn48,

P
(
|V ′n,T | < 2T/n

1/8−2T/n2) ≤ 1/T 3/2.

We will prove this result in Section 3.5.1. The choice of dn7/8e is somewhat arbitrary,

but ensures that there are enough particles at time dn7/8eT/n to outweigh the error

arising from Corollary 3.13. The bound of 1/T 3/2 is not the best possible, but is
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enough to use a Borel-Cantelli argument at the end of the proof of Theorem 3.1. The

requirement that T ≥ Cn48 is also certainly not optimal, but since we will take T →∞,

it is sufficient for our needs.

Once we have shown that there are particles near (s/2, s/2) at small times s, then

we need to show that these particles “feed” other directions (λs′, µs′) for suitable λ

and µ and s′ > s. Given f ∈ G2
M , we will construct a function h that begins by moving

along the line (s/2, s/2), so that we can guarantee large numbers of particles near h

at small times using Proposition 3.14, but which then gradually changes its gradient

to be closer and closer to our given function f . At the same time we will ensure that

h is piecewise linear, so that we can then use Corollary 3.13 to ensure appropriate

growth of particles along the whole path h. We then show that for k = dn7/8e < nt we

have K̃(h, k/n, t) ≈ K̃(f, k/n, t). This is part of Proposition 3.15 below, which will be

proved in Section 3.5.2.

Proposition 3.15. Suppose that f ∈ G2
M satisfies d

dtK̃(f, 0, t)|t=0 > 0 and K̃(f, 0, t) >

0 for all t ∈ (0, 1]. Then for any ε > 0 and n ∈ N, there exists hf,n ∈ E2 such that

hf,n(s) = (s/2, s/2) for all s ≤ dn7/8e/n (3.6)

and if n is sufficiently large,

hf,n ∈ PL2
n ∩G2

M ∩B(f, ε), (3.7)

K̃(hf,n, dn7/8e/n, s) > 0 for all s ∈ (dn7/8e/n, 1] (3.8)

and

K̃(hf,n, dn7/8e/n, 1) ≥ K̃(f, 0, 1)− ε. (3.9)

We will prove this in Section 3.5.2. We are now able to finish the proof of our main

result.

Proof of Theorem 3.1: lower bound. Fix ε > 0. Recall M0 from Lemma 3.2. Since

K(f) ∈ {−∞} ∪ [0,∞), if supf∈F K(f) ≤ 0 then there is nothing to prove. We

therefore assume that there exists f ∈ F with K(f) > 0. In this case, since F is open

and all functions f with K(f) > 0 are in G2
M for some M , we can choose M ≥ M0,

ε′ > 0 and f ∈ G2
M such that B(f, 2ε′) ⊂ F and

K(f) ≥ max
{

sup
g∈F

K(g)− ε, 1

2
sup
g∈F

K(g)
}
> 0.

Since K(f) > 0, we have d
dtK̃(f, 0, t)|t=0 > 0 and K̃(f, 0, t) > 0 for all t ∈ (0, 1].

Therefore by Proposition 3.15, for all sufficiently large n ∈ N the function hf,n satisfies

(3.7), (3.8) and (3.9) with min{ε/2, ε′/2} in place of ε.

Take n ∈ N and write k = dn7/8e. From Proposition 3.14, if we define

V ′n,T =
{
u ∈ NkT/n : ‖Zu(s)− (s/2, s/2)‖ ≤ T

2n2 ∀s ≤ kT/n
}
,

then for T ≥ Cn48 and C large, we have P(|V ′n,T | ≥ 2T/n
1/8−2T/n2

) ≥ 1− 1/T 3/2.
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Since hf,n satisfies (3.7), (3.8) and (3.9) with min{ε/2, ε′/2} in place of ε,

P
(
NT (B(f, ε′)) < e(K̃(f,0,1)−ε)T )

≤ P
(
NT (B(hf,n, ε

′/2)) < e(K̃(hf,n,k/n,1)−ε/2)T
)

≤ E
[
P
(
NT (B(hf,n, ε

′/2)) < e(K̃(hf,n,k/n,1)−ε/2)T
∣∣∣FkT/n)].

Recalling the notation (3.4), note that if u ∈ V ′n,T and Nu
k/n,T (Λ3M,T (hf,n, n)) ≥ r, and

n is sufficiently large, then NT (B(hf,n, ε
′/2)) ≥ r, for any r ≥ 0. Indeed if u ∈ V ′n,T

and u ≤ v is such that ZTv |[k/n,1]∈ Λ3M,T (hf,n, n)|[k/n,1] then using (3.6)

sup
s∈[0,1]

∥∥ZTv (s)− hf,n(s)
∥∥ ≤ sup

s∈[0,k/n]

∥∥ZTu (s)− (s/2, s/2)
∥∥+ sup

s∈[k/n,1]

∥∥ZTv (s)− hf,n(s)
∥∥

≤ 1

2n2
+

1

n2
,

so ZTv ∈ B(hf,n, ε
′/2) when n is large. Thus

P
(
NT (B(f, ε′)) < e(K̃(f,0,1)−ε)T )
≤ E

[ ∏
u∈V ′n,T

P
(
Nu
k/n,T (Λ3M,T (hf,n, n)) < e(K̃(hf,n,k/n,1)−ε/2)T

∣∣∣FkT/n)
]
. (3.10)

For n and T sufficiently large, we check that we may apply Corollary 3.13: indeed, by

(3.8), we have K̃(hf,n, k/n, t) ≥ 0 for all t ≥ k/n, and for u ∈ V ′n,T we have

‖ZTu (k/n)− hf,n(k/n)‖ =
1

T

∥∥Zu(kT/n)− (kT2n ,
kT
2n )
∥∥ ≤ 1

2n2
.

Thus, applying Corollary 3.13 to bound the conditional probability in (3.10) from

above, we obtain that

P
(
NT (B(f, ε′)) < e(K̃(f,0,1)−ε)T ) ≤ E

[ ∏
u∈V ′n,T

(
1− e−O(M4T/n1/4+M3nT 2/3)

)]
.

Recalling that |V ′n,T | ≥ 2T/n
1/8−2T/n2

with probability at least 1− 1/T 3/2, we get

P
(
NT (B(f, ε′)) < e(K̃(f,0,1)−ε)T ) ≤ (1− e−O(M4T/n1/4+M3nT 2/3)

)2T/n1/8−2T/n2

+ 1/T 3/2

and using that 1− x ≤ e−x for all x,

P
(
NT (B(f, ε′)) < e(K̃(f,0,1)−ε)T )

≤ exp
(
− 2T/n

1/8−2T/n2
e−O(M4T/n1/4+M3nT 2/3)

)
+ 1/T 3/2. (3.11)

By Lemma 3.40 with s = T , for T ≥ 3M , whenever t− 1 ≤ T ≤ t we have

NT (B(f, ε′) ∩G2
M,T ) ≤ Nt(B(f, ε′ + 6M/t))
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and therefore if T ≥ 6M/ε′, then we have

NT (B(f, ε′) ∩G2
M,T ) ≤ inf

t∈[T,T+1]
Nt(B(f, 2ε′)).

Thus

P
(

inf
t∈[T,T+1]

Nt(B(f, 2ε′))e−(K̃(f,0,1)−ε)t < 1
)

≤ P
(
NT (B(f, ε′) ∩G2

M,T ) < e(K̃(f,0,1)−ε)T )
≤ P

(
NT (B(f, ε′)) < e(K̃(f,0,1)−ε)T )+ P

(
NT ((G2

M,T )c) ≥ 1
)
.

By Lemma 3.2, since M ≥ M0, the last term is at most e−δ0T
1/3

, and then applying

(3.11), we obtain that

P
(

inf
t∈[T,T+1]

Nt(B(f, 2ε′))e−(K̃(f,0,1)−ε)t < 1
)

≤ exp(−2T/n
1/8−2T/n2

e−O(M4T/n1/4+M3nT 2/3)) +
1

T 3/2
+ e−δ0T

1/3
.

Taking n large enough that the 2T/n
1/8

term dominates the exponent when T is large,

we see that this is summable in T , and therefore by the Borel-Cantelli lemma,

P
(

lim inf
t→∞

Nt(B(f, 2ε′))e−(K̃(f,0,1)−ε)t < 1
)

= 0.

Since B(f, 2ε′) ⊂ F and K̃(f, 0, 1) = K(f) ≥ supg∈F K(g) − ε, the statement of the

theorem follows.

Sketch proof of (3.2). Proving the lower bound in expectation (3.2) involves slightly

more work than the upper bound (3.1). Proposition 3.15 creates a function that ap-

proximates a given f for much of its path, but begins by following the lead diagonal

(s/2, s/2) for a short period. Unfortunately it is designed to work for functions f that

satisfy d
dtK̃(f, 0, t)|t=0 > 0 and K̃(f, 0, s) > 0 for all s ∈ (0, 1]. To prove (3.2) we cannot

make these assumptions on f , but can take a simpler approach than Proposition 3.15.

We define a function ĥf,n that follows the lead diagonal (s/2, s/2) until time d
√
ne/n,

then satisfies

ĥf,n(j/n) =
(d√ne

2n
,
d
√
ne

2n

)
+ f(j/n)− f(d

√
ne/n)

for every j ∈ {d
√
ne, . . . , n}, and interpolates linearly between these values. Following

a similar proof to that of Proposition 3.33, we can show that

lim inf
n→∞

K̃(ĥf,n, 0, 1) ≥ K̃(f, 0, 1),

and then combining Propositions 3.11 and 3.14 yields (3.2).

In the proofs of the results above, it will be useful several times to note that since,

for any f , n, M and T ,

ΛM,T (f, n) ⊂ ΓM,T (f, n), (3.12)
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we have

R−X(Ij ,ΓM,T (f, n), T ) ≤ R−X(Ij ,ΛM,T (f, n), T )

≤ R+
X(Ij ,ΛM,T (f, n), T ) ≤ R+

X(Ij ,ΓM,T (f, n), T ) (3.13)

and therefore by the deterministic bounds (3.60) in Appendix 3.A, ifM,T > 1, n ≥ 2M ,

f ∈ G2
M , j ≥ n1/2 and s ∈ Ij ,

R+
X(Ij ,ΛM,T (f, n), T )− δM,T (j, n)

≤ R∗X(f(s)) ≤ R−X(Ij ,ΛM,T (f, n), T ) + δM,T (j, n). (3.14)

3.3.1 Lower bound on the first moment: proof of Proposition 3.11

Our aim in this section is to outline a proof of Proposition 3.11. Fix f as in the

statement of the proposition. Let Z0 = {(0, 0)} and, for j ∈ {1, . . . , n− 1}, define

Zj = {z ∈ [0,∞)2 : ‖z − f(j/n)‖ ≤ 1
2n2 }.

Lemma 3.3 (Many-to-one), combined with the deterministic bounds on the integral of

the rate function from Lemma 3.6, will reduce the problem to bounding

Q
(
ξT |[k/n,1] ∈ ΛM,T (f, n)|[k/n,1]

∣∣∣ ξT (k/n) = w
)

for w ∈ Zk, so we concentrate on estimating this quantity.

Fix n ∈ N and M,T > 1, and consider f ∈ PL2
n ∩G2

M and j ∈ {0, . . . , n − 1}. We

will apply the coupling defined in Section 3.6 with I = Ij and F = ΛM,T (f, n). Define

qXn,M,T (z, j, f) = Q
Ij ,ΛM,T (f,n),T
z

(∣∣X−(s)− fX(s)
∣∣ ≤ 1

n2 ∀s ∈ Ij ,∣∣X−( j+1
n )− fX( j+1

n )
∣∣ ≤ 1

2n2 , X−|Ij ∈ GM,T |Ij
)

and

q̂Xn,M,T (z, j, f) = Q
Ij ,ΛM,T (f,n),T
z

(
X+( j+1

n )−X−( j+1
n ) = 0

)
and similarly for qYn,M,T (z, j, f) and q̂Yn,M,T (z, j, f).

Lemma 3.16. Suppose that n ≥ 3, f ∈ PL2
n and T > 1. Then for any k ∈ {0, . . . , n−1}

and w ∈ Zk,

Q
(
ξT |[k/n,1] ∈ ΛM,T (f, n)|[k/n,1]

∣∣∣ ξT (k/n) = w
)

≥
n−1∏
j=k

inf
z∈Zj

qXn,M,T (z, j, f) q̂Xn,M,T (z, j, f) qYn,M,T (z, j, f) q̂Yn,M,T (z, j, f).

We carry out the proof of Lemma 3.16, which consists of applying the properties

of the coupling, in Section 3.6.2. We then need to bound the terms on the right-hand

side. Bounding the q̂ terms is fairly straightforward.

Lemma 3.17. Suppose that M > 1, n ≥ 2M , T > 1 and f ∈ PL2
n ∩G2

M . Then for
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any k ≥ dn1/2e,

n−1∏
j=k

inf
z∈Zj

q̂Xn,M,T (z, j, f)q̂Yn,M,T (z, j, f) ≥ exp
(
−O

(M4T

n1/2
+M3n

))
.

Again we will prove Lemma 3.17 in Section 3.6.2. Bounding the q terms is much

more delicate. In the following lemma, the precise form of ∆(j) is not important; we

consider it a small term.

Lemma 3.18. Suppose that M > 1, n ≥ 2M , T > 8n9/2M3/2 and f ∈ PL2
n ∩G2

M .

Then for any j ∈ {d
√
ne, . . . , n− 1} and z = (x, y) ∈ Zj,

qXn,3M,T (z, j, f) ≥ exp
(
− T

∫ (j+1)/n

j/n

(√
2R∗X(f(s))−

√
f ′X(s)

)2
ds− T∆(j)

)
where

∆(j) =
2(M + 1)

n3/2
+

2δM,T (j, n)

n
+

1√
n

√
2δM,T (j, n)

(
fX( j+1

n )− fX( jn)
)

and δM,T (j, n) is defined in Lemma 3.42.

We again delay the proof of Lemma 3.18 to Section 3.6.2. Putting the above ingre-

dients together and bounding
∑n−1

j=d
√
ne/n ∆(j) gives us our main bound, which we now

state.

Proposition 3.19. Suppose that M > 1, n ≥ 2M , T > 8n9/2M3/2 and f ∈ PL2
n ∩G2

M .

Then for any k ≥ d
√
ne and w ∈ Zk,

Q
(
ξT |[k/n,1] ∈ Λ3M,T (f, n)|[k/n,1]

∣∣∣ ξT (k/n) = w
)

≥ exp

(
− TI(f, k/n, 1)−O

(M4T

n1/4
+M3nT 1/2

))
.

Proof. Combining Lemmas 3.16, 3.17 and 3.18, we have

Q
(
ξT |[k/n,1] ∈ Λ3M,T (f, n)|[k/n,1]

∣∣∣ ξT (k/n) = w
)

≥ exp

(
− TI(f, k/n, 1)− 2T

n−1∑
j=k

∆(j)−O
(M4T

n1/2
+M3n

))
.

Recall that

∆(j) =
2(M + 1)

n3/2
+

2δM,T (j, n)

n
+

1√
n

√
2δM,T (j, n)

(
fX( j+1

n )− fX( jn)
)
.

By (3.61),
n−1∑

j=d
√
ne

δM,T (j, n)

n
= O

(M4

n1/2
+
M3n

T

)
.
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By Cauchy-Schwarz,

n−1∑
j=d
√
ne

1√
n

√
2δM,T (j, n)

(
fX( j+1

n )− fX( jn)
)

≤
( n−1∑
j=d
√
ne

2δM,T (j, n)

n

)1/2( n−1∑
j=d
√
ne

(
fX( j+1

n )− fX( jn)
))1/2

.

Using (3.61) again, together with the fact that f ∈ G2
M , and that

√
a+ b ≤

√
a +
√
b

for a, b ≥ 0, we have

n−1∑
j=d
√
ne

1√
n

√
2δM,T (j, n)

(
fX( j+1

n )− fX( jn)
)

= O
(M2

n1/4
+
M3/2n1/2

T 1/2

)
M1/2

= O
(M5/2

n1/4
+
M2n1/2

T 1/2

)
.

Therefore

n−1∑
j=k

∆(j) ≤
n−1∑

j=d
√
ne

∆(j) = O
( M

n1/2
+
M4

n1/2
+
M3n

T
+
M5/2

n1/4
+
M2n1/2

T 1/2

)
.

Combining error terms gives the result.

As promised, we can now easily prove Proposition 3.11, that is the lower bound on

the first moment.

Proof of Proposition 3.11. For u ∈ NkT/n, let N (u)
T be the set of descendants of u in

NT . Since u ∈ NkT/n, by the Markov property and Lemma 3.3 (Many-to-one), for any

k ∈ {0, . . . , n− 1},

E

[ ∑
v∈N (u)

T

1{ZTv |[k/n,1]∈Λ3M,T (f,n)|[k/n,1]}

∣∣∣∣∣FkT/n
]

= Q
[
1{ξT |[k/n,1]∈Λ3M,T (f,n)|[k/n,1]}e

∫ T
kT/nR(ξs)ds

∣∣∣ ξT (k/n) = w
]∣∣∣
w=ZTu (k/n)

.

Now, since k ≥ d
√
ne and f ∈ G2

M ⊂ G2
3M , by (3.12) and the deterministic bounds on

the integral of the rate function from Lemma 3.6, if ξT |[k/n,1] ∈ Λ3M,T (f, n)|[k/n,1], then

∫ T

kT/n
R(ξs)ds = T

∫ 1

k/n
R(TξT (s))ds ≥ T

∫ 1

k/n
R∗(f(s))ds− Tη(3M,n, T ),
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and therefore

E

[ ∑
v∈N (u)

T

1{ZTv |[k/n,1]∈Λ3M,T (f,n)|[k/n,1]}

∣∣∣∣∣FkT/n
]

≥ exp

(
T

∫ 1

k/n
R∗(f(s))ds− Tη(3M,n, T )

)
·Q
(
ξT |[k/n,1] ∈ Λ3M,T (f, n)|[k/n,1]

∣∣∣ ξT (k/n) = w
)∣∣∣
w=ZTu (k/n)

.

We also know from Proposition 3.19 that if w ∈ Zk, then

Q
(
ξT |[k/n,1] ∈ Λ3M,T (f, n)|[k/n,1]

∣∣∣ ξT (k/n) = w
)

≥ exp

(
− TI(f, k/n, 1)−O

(M4T

n1/4
+M3nT 1/2

))
.

Combining these estimates and recalling that η(3M,n, T ) = O(M4n−1/2 +M3nT−1/3)

gives the result.

3.3.2 Upper bound on the second moment: proof of Proposition 3.12

For our first moment bounds we used the many-to-one lemma, Lemma 3.3, which gives

a method for calculating expectations of sums over all the particles in our population at

a fixed time. For our second moment bound, we will need an analogue for calculating

expectations of squares of sums over particles. This will involve another measure Q2,

whose description is again adapted from [32], this time in the case k = 2.

Let Q2 be a probability measure under which ξ1
t and ξ2

t are Markov processes each

living in R2 constructed in the following way:

• Take an exponential random variable e of parameter 1.

• Let (χt, t ≥ 0) be a pure jump Markov process in R2 independent of e such that

χ0 = 0 and when χt is in state z, jumps occur at rate 2R(z). When there is a

jump from state z, it is of the form (E , 0) with probability P (z) and (0, E) with

probability 1−P (z), where E is an independent exponentially-distributed random

variable with parameter 1.

• Let τ = inf{t > 0 :
∫ t

0 2R(χs)ds > e}.

• Let ξ1
t = ξ2

t = χt for t < τ .

• Let ξ1
τ equal χτ plus a jump of the form (− logU , 0) with probability P (χτ ) and

(0,− logU) with probability 1 − P (χτ ), where U is an independent uniformly

distributed random variable on (0, 1); let ξ2
τ equal χτ plus either (− log(1−U), 0)

or (0,− log(1− U)) respectively.

• Conditionally on τ , (ξ1
t )t≤τ and (ξ2

t )t≤τ , the processes (ξ1
τ+t, t ≥ 0) and (ξ2

τ+t, t ≥
0) behave independently as if under Qξ1τ

and Qξ2τ
respectively.

We write Q2 both for the measure and for its corresponding expectation operator.
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Lemma 3.20 (Many-to-two, Lemma 1 of [32] with k = 2). Suppose that t ≥ 0. For

any measurable function f : (R2)2 → R,

E

[ ∑
u1,u2∈Nt

f(Zu1(t), Zu2(t))

]
= Q2

[
f(ξ1

t , ξ
2
t )e3

∫ τ∧t
0 R(ξ1s)ds+

∫ t
τ∧tR(ξ1s)ds+

∫ t
τ∧tR(ξ2s)ds

]
.

In fact, by using the description of Q2 above, the key to the second moment bound

will be to estimate terms of the form

Q
(
ξT |[a,b] ∈ ΛM,T (f, n)

∣∣
[a,b]

∣∣ ξTa = z
)

where Q = Q0 is the measure seen in Section 3.2.1. The same coupling used for

Proposition 3.4 will yield the following result.

Proposition 3.21. Suppose that f ∈ E2, n ∈ N, T > 1 and M > 1. Then for any

0 ≤ a < b ≤ 1 and z such that ‖z − f(a)‖ < 1/n2,

Q
(
ξT |[a,b] ∈ ΛM,T (f, n)

∣∣
[a,b]

∣∣ ξTa = z
)

≤ exp

(
− T

dbne−1∑
j=banc

(
E+
X(Ij ∩ [a, b],ΛM,T (f, n), T ) + E+

Y (Ij ∩ [a, b],ΛM,T (f, n), T )
))
.

We postpone the details of the proof to Section 3.6. We then need to relate the

right-hand side in Proposition 3.21 to our rate function, in the form of the following

lemma.

Lemma 3.22. Suppose that M,T > 1, n ≥ 2M and f ∈ PL2
n∩G2

M . Then for any a, b

such that d
√
ne/n ≤ a < b ≤ 1,

dbne−1∑
j=banc

(
E+
X(Ij ∩ [a, b],ΛM,T (f, n), T ) + E+

Y (Ij ∩ [a, b],ΛM,T (f, n), T )
)

≥ I(f, a, b)−O
(M4

n1/4
+
M3n

T 1/2

)
.

The proof of Lemma 3.22 is similar to the deterministic bounds required for the

upper bound in Section 3.2.2, but also uses the uniform structure of ΛM,T (f, n) and

therefore requires slightly different estimates. We carry this out in Appendix 3.A.3,

and for now continue to the proof of Proposition 3.12, that is the upper bound on the

second moment. The proof is fairly long, but uses only the ingredients above together

with bounds already developed for the upper bound on the first moment.

Proof of Proposition 3.12. Recall the construction of Q2 together with the Markov pro-

cesses ξ1 and ξ2 above. For s ≥ 0 and T > 0, write ξ1,T
s = ξ1

sT /T and ξ2,T
s = ξ2

sT /T .

For i = 1, 2, define the event

Bi = {ξi,T |[k/n,1] ∈ Λ3M,T (f, n)|[k/n,1]}
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and for the single spine ξ defined under Q, define

B(a, b) = {ξT |[a,b] ∈ Λ3M,T (f, n)|[a,b]}

By Lemma 3.20,

E

[( ∑
v∈N (u)

T

1{ZTv |[k/n,1]∈Λ3M,T (f,n)|[k/n,1]}

)2 ∣∣∣∣∣FkT/n
]

= Q2
[
1B1∩B2e

3
∫ T∧τ
kT/nR(ξ1s)ds+

∫ T
T∧τ R(ξ1s)ds+

∫ T
T∧τ R(ξ2s)ds

∣∣∣ τ > kT
n , ξ

1,T
k/n = z

]∣∣∣
z=Zu(kT/n)/T

.

From the construction of Q2 before Lemma 3.20, it is clear that τ has a density, and

that

Q2
[
1B1∩B2e

3
∫ T∧τ
kT/nR(ξ1s)ds+

∫ T
T∧τ R(ξ1s)ds+

∫ T
T∧τ R(ξ2s)ds

∣∣∣ τ > kT
n , ξ

1,T
k/n = z

]
≤
∫ T

kT/n
Q2
[
1B1∩B2∩{τ∈dt}

∣∣∣ τ > kT
n , ξ

1,T
k/n = z

]
· sup
g∈Λ3M,T (f,n)

e
3
∫ t
kT/nR(Tg(s/T ))ds+2

∫ T
t R(Tg(s/T ))ds

+ Q2
[
1B1∩B2∩{τ>T}

∣∣∣ τ > kT
n , ξ

1,T
k/n = z

]
sup

g∈Λ3M,T (f,n)
e

3
∫ T
kT/nR(Tg(s/T ))ds

.

It also follows from the construction of Q2 before Lemma 3.20 that

Q2
[
1B1∩B2∩{τ∈dt}

∣∣∣ τ > kT
n , ξ

1,T
k/n = z

]
≤ Q

[
1B(k/n,t/T )2R(ξt)e

−2
∫ t
kT/nR(ξs)dsdt

∣∣∣ ξTk/n = z
]

· sup
‖w−f(t/T )‖<1/n2

Q
(
B(t/T, 1)

∣∣∣ ξTt/T = w
)2

≤ Q
(
B(k/n, t/T )

∣∣∣ ξTk/n = z
)

sup
‖w−f(t/T )‖<1/n2

Q
(
B(t/T, 1)

∣∣∣ ξTt/T = w
)2

· sup
h∈Λ3M,T (f,n)

2R(Th(t/T ))e
−2T

∫ t/T
k/n

R(Th(s))ds

and that

Q2
[
1B1∩B2∩{τ>T}

∣∣∣ τ > kT
n , ξ

1,T
k/n = z

]
= Q

[
1B(k/n,1)e

−2
∫ T
kT/nR(ξs)ds

∣∣∣ ξTk/n = z
]

≤ Q
(
B(k/n, 1)

∣∣∣ ξTk/n = z
)

sup
h∈Λ3M,T (f,n)

e
−2T

∫ 1
k/nR(Th(s))ds

.
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Combining these bounds, we have shown that

E

[( ∑
v∈N (u)

T

1{ZTv |[k/n,1]∈Λ3M,T (f,n)|[k/n,1]}

)2 ∣∣∣∣∣FkT/n
]

≤
∫ T

kT/n

{
Q
(
B(k/n, t/T )

∣∣∣ ξTk/n = z
)∣∣∣
z=Zu(kT/n)/T

· sup
‖w−f(t/T )‖<1/n2

Q
(
B(t/T, 1)

∣∣∣ ξTt/T = w
)2

· sup
h∈Λ3M,T (f,n)

2R(Th(t/T ))e
−2T

∫ t/T
k/n

R(Th(s))ds

· sup
g∈Λ3M,T (f,n)

e
3T
∫ t/T
k/n

R(Tg(s))ds+2T
∫ 1
t/T R(Tg(s))ds

}
dt

+ Q
(
B(k/n, 1)

∣∣∣ ξTk/n = z
)∣∣∣
z=Zu(kT/n)/T

· sup
h∈Λ3M,T (f,n)

e
−2T

∫ 1
k/nR(Th(s))ds

· sup
g∈Λ3M,T (f,n)

e
3T
∫ 1
k/nR(Tg(s))ds

. (3.15)

Recall that k ≥ d
√
ne. By (3.12) and the deterministic bounds on the integral of

the rate function from Lemma 3.6, for any t ∈ [kT/n, T ],

sup
g∈Λ3M,T (f,n)

∫ t/T

k/n
R(Tg(s))ds ≤

∫ bnt/T c/n
k/n

R∗(f(s))ds+ η(3M,n, T )

and

inf
h∈Λ3M,T (f,n)

∫ t/T

k/n
R(Th(s))ds ≥

∫ bnt/T c/n
k/n

R∗(f(s))ds− η(3M,n, T ).

Thus

sup
h∈Λ3M,T (f,n)

e
−2T

∫ t/T
k/n

R(Th(s))ds · sup
g∈Λ3M,T (f,n)

e
3T
∫ t/T
k/n

R(Tg(s))ds+2T
∫ 1
t/T R(Tg(s))ds

≤ exp

(
− T

∫ bnt/T c/n
k/n

R∗(f(s))ds+ 2T

∫ 1

k/n
R∗(f(s))ds+ 7Tη(3M,n, T )

)
.

Similarly,

sup
h∈Λ3M,T (f,n)

e
−2T

∫ 1
k/nR(Th(s))ds · sup

g∈Λ3M,T (f,n)
e

3T
∫ 1
k/nR(Tg(s))ds

≤ exp

(
T

∫ 1

k/n
R∗(f(s))ds+ 5Tη(3M,n, T )

)
. (3.16)

By the definition of GM,T , plus the assumption that T 2/3 ≥ 9Mn1/2, for any t ∈
[kT/n, T ] we also have

sup
h∈Λ3M,T (f,n)

2R(Th(t/T )) ≤ 2
TM(t/T + 2T−2/3) + 1

T (t/(MT )− 2T−2/3)
≤ 6MT

Tk/(2Mn)
≤ 12M2n.

The above estimates bound the non-probabilistic terms in (3.15). For the other
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terms we apply Proposition 3.21 and Lemma 3.22 to obtain the bound

Q
(
B(a, b)

∣∣∣ ξTa = z
)

≤ exp

(
− T

dbne−1∑
j=banc

(
E+
X(Ij ∩ [a, b],Λ3M,T (f, n), T ) + E+

Y (Ij ∩ [a, b],Λ3M,T (f, n), T )
))

≤ exp
(
− TI(f, a, b) +O

(M4T

n1/4
+M3nT 1/2

))
.

Putting all these ingredients together, we obtain that

E

[( ∑
v∈N (u)

T

1{ZTv |[k/n,1]∈Λ3M,T (f,n)|[k/n,1]}

)2 ∣∣∣∣∣FkT/n
]

≤
∫ T

kT/n
exp

(
− TI(f, k/n, t/T )− 2TI(f, t/T, 1) +O

(M4T

n1/4
+M3nT 1/2

))
· 12M2n exp

(
− T

∫ bnt/T c/n
k/n

R∗(f(s))ds+ 2T

∫ 1

k/n
R∗(f(s))ds+ 7Tη(3M,n, T )

)
dt

+ exp

(
− TI(f, k/n, 1) +O

(M4T

n1/4
+M3nT 1/2

))
· exp

(
T

∫ 1

k/n
R∗(f(s))ds+ 5Tη(3M,n, T )

)
. (3.17)

Using that f ∈ PL2
n and therefore is absolutely continuous, we see that

− I(f, k/n, t/T )− 2I(f, t/T, 1)−
∫ bnt/T c/n
k/n

R∗(f(s))ds+ 2

∫ 1

k/n
R∗(f(s))ds

≤ 2K̃(f, k/n, 1)− K̃(f, k/n, t/T ) +O(M2/n).

The result follows from substituting this into (3.17) and recalling from Lemma 3.6 that

η(3M,n, T ) = O
(M4

n1/2
+
M3n

T 1/3

)
.

3.4. Detailed construction and ruling out difficult paths:
proof of Lemma 3.2

In this section, we prove Lemma 3.2, which said that for large M all particles are

(M,T )-good with high probability as T → ∞. We will begin by defining a discrete

tree with labels to represent the positions and split times of particles, which besides

being a necessary step in our proof, also provides a formal construction of the process

introduced in Section 3.1.

Take an infinite binary tree T and let Tn be the vertices in the nth generation of

T, so that |Tn| = 2n. Attach to each vertex v ∈ T two independent random variables

U split
v and Udir

v , both uniformly distributed on (0, 1). Also attach another independent

random variable ev which is exponentially distributed with parameter 1.

We recursively define random variables Bv, Hv and Tv for each vertex v ∈ T, which

represent the base, height and birth time of the rectangle corresponding to v. Write

ρ for the unique vertex in T0, which we call the root. Under the probability measure
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Pa,b, set Bρ = a, Hρ = b and Tρ = 0. We write P as shorthand for P1,1.

Now take an integer n ≥ 0 and suppose that we have defined Bu, Hu and Tu for all

vertices u in generations 0, . . . , n. For a vertex v ∈ Tn, define

Dv =

{
1 if Udir

v ≤ P (− logBv,− logHv)

0 if Udir
v > P (− logBv,− logHv).

Write v1 and v2 for the two children of v in generation n+ 1. If Dv = 1, then set

Bv1 = U split
v Bv, Bv2 = (1− U split

v )Bv, and Hv1 = Hv2 = Hv;

if on the other hand Dv = 0, then set

Hv1 = U split
v Hv, Hv2 = (1− U split

v )Hv, and Bv1 = Bv2 = Bv.

Then, for each v ∈ T, define

Xv = − logBv and Yv = − logHv.

Finally, set

Tv1 = Tv2 = Tv +
ev

R(Xv, Yv)
.

We now translate this discrete-time process (with continuous labels) into the model

in continuous-time described in the introduction. For each t ≥ 0, define

Nt =
{
v ∈ T : Tv ≤ t < Tv +

ev

R(Xv, Yv)

}
,

the set of particles that are alive at time t. Then for v ∈ Nt and s ≤ t, if u is the unique

ancestor of v in T that satsfies Tu ≤ s < Tu + eu/R(Xu, Yu), then set Bv(s) = Bu,

Hv(s) = Hu, Xv(s) = Xu and Yv(s) = Yu. We call Zv(s) = (Xv(s), Yv(s)) the position

of particle v at time s. For T > 0, we can also consider particles’ paths rescaled by T ,

by which we mean, for s ≤ t and v ∈ NtT ,

XT
v (s) =

Xv(sT )

T
, Y T

v (s) =
Yv(sT )

T
, ZTv (s) = (XT

v (s), Y T
v (s)).

If we have v ∈ NT then we may refer to XT
v to mean the function XT

v : [0, 1]→ R, and

similarly for Y T
v and ZTv .

Lemma 3.23. For any κ > 0, there exists M > 1 and N ∈ N such that

P
(
∃v ∈ Tn : Xv 6∈ [n/M,Mn] or Yv 6∈ [n/M,Mn]

or Tv < n/M or Tv +
ev

R(Xv, Yv)
> Mn

)
≤ e−κn

for all n ≥ N .

Proof. Note that for any u ∈ Tn, Xu is the sum of n random variables, each of which

is (stochastically) bounded above by an independent exponential random variable with
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parameter 1 (this is the distribution of − logU when U is U(0, 1)). Thus, if E ∼ Exp(1),

P(Xu > Mn) ≤ E[eXu/2]e−Mn/2 ≤ E[eE/2]ne−Mn/2 = 2ne−Mn/2

and, since there are 2n vertices in Tn, a union bound gives

P(∃v ∈ Tn : Xv > Mn) ≤ 4ne−Mn/2.

By choosing M large enough, we can make this smaller than e−κn. By symmetry we

also have

P(∃v ∈ Tn : Yv > Mn) ≤ e−κn.

For a lower bound on Xv and Yv, we first give a lower bound on Xv + Yv. Indeed,

note that for u ∈ Tn, Xu + Yu is a sum of n independent random variables, each of

which is exponentially distributed with parameter 1. Thus, for any λ > 0 and any

u ∈ Tn,

P(Xu + Yu < n/M) ≤ E[e−λ(Xu+Yu)]eλn/M = E[e−λE ]neλn/M =
1

(1 + λ)n
eλn/M ,

so that we can choose M0 large enough that

P(Xu + Yu < n/M0) ≤ 2−2n−2e−2κ(n+1). (3.18)

Take u ∈ Tn, let u′ be the unique ancestor of u in Tbn/2c and take M > M0. Note

that, applying (3.18), if n ≥ 6

P(∃v ∈ Tn : Xv ∧ Yv < n/M − 1)

≤ E[#{v ∈ Tn : Xv ∧ Yv < n/M − 1}]

= 2nP(Xu ∧ Yu < n/M − 1)

≤ 2nP(Xu ∧ Yu < n/M − 1 and Xu′ + Yu′ ≥ bn/2c/M0) + 2nP(Xu′ + Yu′ < bn/2c/M0)

≤ 2nP(Xu ∧ Yu < n/M − 1 and Xu′ + Yu′ ≥ n/(3M0)) + 2n · 2−2bn/2c−2e−2κ(bn/2c+1)

≤ 2nP(Xu ∧ Yu < n/M − 1 and Xu′ + Yu′ ≥ n/(3M0)) + e−κn/2. (3.19)

Now, if Xu ∧ Yu < n/M − 1 and Xu′ + Yu′ ≥ n/(3M0), then for all vertices v on the

path from u′ to u, we have

Xv ∨ Yv + 1

Xv ∧ Yv + 1
≥ Xv + Yv −Xv ∧ Yv + 1

Xv ∧ Yv + 1
≥ Xv + Yv
Xv ∧ Yv + 1

− 1 ≥ M

3M0
− 1.

Recalling the definition of P , this means that

P (Xv, Yv) ≥ 1− Xv ∧ Yv + 1

2(Xv ∨ Yv + 1)
≥ 1− 1

2M/(3M0)− 2

and the same holds for 1 − P (Xv, Yv). This means that Xu ∧ Yu −Xu′ ∧ Yu′ consists

of dn/2e random variables, each of which is (stochastically) bounded below by an

independent random variable E′ which is zero with probability 1/(2M/(3M0)− 2) and
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equals an independent copy of E with probability 1 − 1/(2M/(3M0) − 2). Thus, for

any λ > 0,

P(Xu ∧ Yu < n/M − 1 and Xu′ + Yu′ ≥ n/(3M0))

≤ E
[
e−λXu∧Yu1{Xv∨Yv+1

Xv∧Yv+1
≥ M

3M0
−1
}]eλn/M

≤ E
[
e−λ(Xu∧Yu−Xu′∧Yu′ )1{Xv∨Yv+1

Xv∧Yv+1
≥ M

3M0
−1
}]eλn/M

≤ E[e−λE
′
]dn/2eeλn/M

≤
( 1

2M/(3M0)− 2
+ E[e−λE ]

(
1− 1

2M/(3M0)− 2

))dn/2e
eλn/M

≤
( 1

2M/(3M0)− 2
+

1

λ+ 1

)dn/2e
eλn/M .

By choosing λ large and thenM large, we can ensure that this is smaller than 2−ne−κn/2,

which when combined with (3.19), shows that for n sufficiently large,

P
(
∃v ∈ Tn : Xv 6∈ [n/M,Mn] or Yv 6∈ [n/M,Mn]

)
≤ e−κn. (3.20)

We now turn to Tv. As for Xv and Yv, the upper bound is easy: since R(x, y) ≥ 1

for all x and y, for any fixed u ∈ Tn we have

P
(
Tu +

eu

R(Xu, Yu)
> Mn

)
= P

(∑
w≤u

ew

R(Xw, Yw)
> Mn

)
≤ P

(∑
w≤u

ew > Mn

)
≤ E[eE/2]n+1e−Mn/2 = 2n+1e−Mn/2,

so a union bound gives

P
(
∃v ∈ Tn : Tv +

ev

R(Xv, Yv)
> Mn

)
≤ 2 · 4ne−Mn/2

which can be made smaller than e−κn by choosing M large.

For a lower bound on Tv, define the event

Υn,M = {Xv ∈ [k/M,Mk] and Yv ∈ [k/M,Mk] ∀v ∈ Tk, ∀k ≥ n}.

By (3.20), for any κ > 0, we may choose N and M0 sufficiently large that

P(Υc
n,M0

) ≤
∞∑
j=n

P
(
∃v ∈ Tn : Xv 6∈ [n/M0,M0n] or Yv 6∈ [n/M0,M0n]

)
≤ 2−2n−3e−2κ(n+1) (3.21)

for all n ≥ N . Fix u ∈ Tn and let ρ = u0, u1, u2, . . . , un = u be the unique path from
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the root ρ to u in the tree. Then for n ≥ 2N ,

P(Tu < n/M) = P
( n−1∑
j=0

euj

R(Xuj , Yuj )
<

n

M

)

≤ P(Υc
bn/2c,M0

) + P
(

Υbn/2c,M0
∩
{ n∑
j=bn/2c

euj

R(Xuj , Yuj )
<

n

M

})
.

(3.22)

Since n ≥ 2N , we have

P(Υc
bn/2c,M0

) ≤ 2−2bn/2c−3e−2κ(bn/2c+1)/2 ≤ 2−n−1e−κn. (3.23)

On the event Υbn/2c,M0
, we have

R(Xuj , Yuj ) ≤
M0j + 1

j/M0 + 1
≤M2

0

for all j ≥ bn/2c; therefore

P
(

Υbn/2c,M0
∩
{ n∑
j=bn/2c

euj

R(Xuj , Yuj )
<

n

M

})
≤ P

( n∑
j=bn/2c

euj

M2
0

<
n

M

)
.

But for any λ > 0,

P
( n∑
j=bn/2c

euj

M2
0

<
n

M

)
= P

(
e−λ

∑n
j=bn/2c euj > e−λM

2
0n/M

)
≤ E[e−λ

∑n
j=bn/2c euj ]eλM

2
0n/M

≤ E[e−λE ]n/2eλM
2
0n/M =

1

(1 + λ)n/2
eλM

2
0n/M .

Substituting this and (3.23) into (3.22), we have

P(Tu < n/M) ≤ 2−n−1e−κn +
1

(1 + λ)n/2
eλM

2
0n/M .

Finally, taking a union bound over all 2n vertices in Tn, we obtain

P(∃v ∈ Tn : Tv < n/M) ≤ e−κn/2 +
(2eλM

2
0 /M

√
1 + λ

)n
which can be made smaller than e−κn by choosing λ large and then M large.

Fix α ∈ (0, 1) and define the event

GM (T ) =
{
Xv ∈

[ n
M
− Tα,Mn+ Tα

]
, Yv ∈

[ n
M
− Tα,Mn+ Tα

]
,

Tv ≥
n

M
− Tα and Tv + ev ≤Mn+ Tα ∀v ∈ Tn ∀n ≥ 0

}
.
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Corollary 3.24. There exist M > 1 and δ > 0 such that for any T ≥ 0,

P(GM (T )c) ≤ exp(−δTα).

Proof. By Lemma 3.23 we may choose M ∈ (1,∞) such that for all n large enough,

P(∃v ∈ Tn : Xv 6∈ [n/M,Mn] or Yv 6∈ [n/M,Mn]

or Tv < n/M or Tv + ev > Mn) ≤ e−n.

Let

GM,n(T ) =
{
Xv ∈

[ n
M
− Tα,Mn+ Tα

]
, Yv ∈

[ n
M
− Tα,Mn+ Tα

]
,

Tv ≥
n

M
− Tα and Tv + ev ≤Mn+ Tα ∀v ∈ Tn

}
,

so that

GM (T ) =

∞⋂
n=0

GM,n(T ).

For n ≤ Tα/M , since n/M − Tα ≤ 0, we have

GM,n(T ) =
{
Xv ≤Mn+ Tα, Yv ≤Mn+ Tα and Tv + ev ≤Mn+ Tα ∀v ∈ Tn

}
and therefore

GM,n(T ) ⊃
{
Xv ≤ Tα, Yv ≤ Tα and Tv + ev ≤ Tα ∀v ∈ Tn

}
.

By monotonicity

bTα/Mc⋂
n=0

GM,n(T ) ⊃
{
Xv ≤ Tα, Yv ≤ Tα and Tv + ev ≤ Tα ∀v ∈ TbTα/Mc

}
.

and thus, by our choice of M ,

P
( bTα/Mc⋃

n=0

GM,n(T )c
)
≤ P

(
∃v ∈ TbTα/Mc : Xv > Tα, or Yv > Tα or Tv + ev > Tα

)
≤ e−bTα/Mc.

On the other hand, for n > Tα/M ,

GM,n(T ) ⊃
{
Xv ∈

[ n
M
,Mn

]
, Yv ∈

[ n
M
,Mn

]
, Tv ≥

n

M
and Tv + ev ≤Mn ∀v ∈ Tn

}
so by our choice of M ,

P(GM,n(T )c) ≤ e−n.
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Combining the bounds for n ≤ Tα/M and n > Tα/M , we have

P
( ∞⋃
n=0

GM,n(T )c
)
≤ e−bTα/Mc +

∑
n>Tα/M

e−n

and choosing δ < 1/M completes the proof.

We can now prove our main result for this section, Lemma 3.2.

Proof of Lemma 3.2. For t ≥ 0, suppose that u ∈ Nt and let n(u) be the unique n such

that u ∈ Tn. By the definition of Nt, we have Tu ≤ t < Tu + eu. On GM (T ), we have

Tv + ev ≤ t for all v ∈ Tn with Mn + Tα ≤ t; so we must have n(u) > (t − Tα)/M .

Similarly, on GM (T ), we have Tv > t for all v ∈ Tn with n/M − Tα > t; so we must

have n(u) ≤M(t+ Tα). Thus, on GM (T ), we have

t− Tα

M
< n(u) ≤M(t+ Tα)

and therefore also

t− Tα

M2
− Tα < Xu ≤M2(t+ Tα) + Tα and

t− Tα

M2
− Tα < Yu ≤M2(t+ Tα) + Tα.

Since this holds for any particle u ∈ Nt for any t ≥ 0, taking α = 1/3 and rescaling

by T we deduce that on GM (T ), the paths of all particles fall within G2
M2,T , and the

result follows from Corollary 3.24.

3.5. Growth of the population at small times

In this section we prove two results that are essentially concerned with showing that

the number of particles near any reasonable straight line (λs, µs), s ≥ 0, grows expo-

nentially fast. The first of these results is Proposition 3.14, which considers the case

λ = µ = 1/2; the idea in this case is that our rectangles prefer to be “roughly square”,

and relatively simple moment bounds will show that there are indeed many particles

near this line. This will be the content of Section 3.5.1. We then move on to prov-

ing Proposition 3.15, which concerns a function that begins by moving along the line

(s/2, s/2) but then gradually shifts its gradient towards a general slope (λs, µs). This

is done in Section 3.5.2.

3.5.1 The lead diagonal: proof of Proposition 3.14

Recall the discrete-time setup from Section 3.4. In order to initially remove the de-

pendence between time and space, let T̃ρ = 0, and recursively for each v ∈ T let

T̃v1 = T̃v2 = T̃v + ev.

For v ∈ Tk and j ≤ k, write Xv(j) to mean Xu where u is the unique ancestor of v

in Tj . Similarly write Yv(j), Tv(j), T̃v(j) and Zv(j). Also define

∆v(j) = Xv(j)− Yv(j) and Sv(j) = Xv(j) + Yv(j)− j,

and let (Gj , j ≥ 0) be the natural filtration of the discrete-time process. We begin with

sixth moment estimates on ∆v(j) and Sv(j). The reason for using the sixth moment is
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that this eventually gives us a decay of order 1/T , which will be strong enough for our

purposes. We could use higher moments if we wanted to get a better rate of decay.

Lemma 3.25. There exists a finite constant C such that for any vertex v ∈ Tk and

0 ≤ j ≤ k, we have

E
[
(Xv(j)− Yv(j))6

]
≤ Cj3

and

E[(Xv(j) + Yv(j)− j)6] ≤ Cj3.

Proof. Let vj be the vertex in Tj consisting of all 1s, i.e. vj = vj−11 for all j. By sym-

metry it suffices to consider v = vk. Letting Ej = − logU split
vj , we see by construction

that

Xvj −Xvj−1 = Dvj−1Ej−1 and Yvj − Yvj−1 = (1−Dvj−1)Ej−1.

We also note that {Ej : j ≥ 0} is a collection of independent exponentially distributed

random variables of parameter 1, such that Ej is independent of Dvj for each j.

Let ∆j = Xvj − Yvj . We begin by bounding the second moment of ∆j , then the

fourth moment, before we tackle the sixth moment. By the above,

E
[
∆2
j

∣∣Gj−1

]
= E

[(
∆j−1 + (2Dvj−1 − 1)Ej−1

)2∣∣Gj−1

]
= ∆2

j−1 + 2∆j−1E[(2Dvj−1 − 1)Ej−1|Gj−1] + E[(2Dvj−1 − 1)2E2
j−1|Gj−1]

= ∆2
j−1 + 2∆j−1E[2Dvj−1 − 1|Gj−1] + 2, (3.24)

where the last line follows from the independence of Ej−1 from Dvj−1 and Gj−1 and the

fact that (2Dvj−1 − 1)2 = 1. Now we note that, from the definition of Dvj , if ∆j ≥ 0

then Dvj equals 1 with probability at most 1/2, whereas if ∆j ≤ 0 then Dvj equals 1

with probability at least 1/2. Thus

∆j−1E[2Dvj−1 − 1|Gj−1] ≤ 0, (3.25)

so that (3.24) becomes

E
[
∆2
j

∣∣Gj−1

]
≤ ∆2

j−1 + 2.

Taking expectations and summing over i ≤ j, we obtain

E
[
∆2
j

]
≤ 2j. (3.26)

We now move on to the fourth moment, following a very similar argument:

E
[
∆4
j

∣∣Gj−1

]
= E

[(
∆j−1 + (2Dvj−1 − 1)Ej−1

)4∣∣Gj−1

]
= ∆4

j−1 + 4∆3
j−1E[(2Dvj−1 − 1)Ej−1|Gj−1]

+ 6∆2
j−1E[(2Dvj−1 − 1)2E2

j−1|Gj−1]

+ 4∆j−1E[(2Dvj−1 − 1)3E3
j−1|Gj−1] + E[(2Dvj−1 − 1)4E4

j−1|Gj−1]

= ∆4
j−1 + 4∆3

j−1E[2Dvj−1 − 1|Gj−1] + 6∆2
j−1E[E2

j−1]

+ 4∆j−1E[2Dvj−1 − 1|Gj−1]E[E3
j−1] + E[E4

j−1], (3.27)
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where again for the last line we used the independence of Ej−1 from Dvj−1 and Gj−1

and the fact that (2Dvj−1 − 1)2 = 1. By (3.25) and the facts that E[E2
j−1] = 2 and

E[E4
j−1] = 24, we obtain

E
[
∆4
j

∣∣Gj−1

]
≤ ∆4

j−1 + 12∆2
j−1 + 24.

Taking expectations and using (3.26), we have

E
[
∆4
j

]
≤ E[∆4

j−1] + 24(j − 1) + 24 = E[∆4
j−1] + 24j.

Summing over i ≤ j, this gives

E
[
∆4
j

]
≤

j∑
i=1

24j = 12j(j + 1). (3.28)

The same strategy works again for the sixth moment, expanding out ∆6
j = (∆j−1 +

(2Dvj−1−1)Ej−1)6 and using the independence of Ej−1 from Dvj−1 and Gj−1, and then

applying (3.25). Omitting the calculations, the upshot is that

E
[
∆6
j

∣∣Gj−1

]
≤ ∆6

j−1 + 30∆4
j−1 + 360∆2

j−1 + 720.

Taking expectations and using (3.26) and (3.28), we have

E
[
∆6
j

]
≤ E[∆6

j−1] + 360j(j + 1) + 720j + 720 = E[∆6
j−1] + 360(j + 1)(j + 2).

Summing over i ≤ j, we have

E
[
∆6
j

]
≤ 360

j∑
i=1

(i+ 1)(i+ 2) = 120j(j2 + 6j + 11)

which proves the first part of the lemma.

The second statement of the lemma is much simpler to prove, since Xvj + Yvj =∑j−1
i=0 Ei. Either by direct calculation or by using the moment generating function, one

may write down an expression for every moment of Xv(j) +Yv(j)− j; in particular one

may check that

E[(Xv(j) + Yv(j)− j)6] ≤ Cj3

for some constant C, completing the proof.

Lemma 3.26. Let K(n, T ) = dn7/8eT/n+ d2T/n2e and let

Un,T =
{
v ∈ TK(n,T ) : ‖Zv(k)−(k/2, k/2)‖ ≤ T

32n4 and |T̃v(k)−k| ≤ T
4n2 ∀k ≤ K(n, T )

}
.

Then there exists a finite constant C such that for any T ≥ Cn48,

P
(
|Un,T | ≥ 1

2T 2 2K(n,T )
)
≥ 1− T−3/2.
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Proof. Note that, for any k ≥ 0 and u ∈ Tk, by the triangle inequality we have

|Xu − k/2| =
1

2
|Xu + Yu − k +Xu − Yu| ≤

1

2
|Xu + Yu − k|+

1

2
|Xu − Yu|,

and similarly for |Yu − k/2|. Thus

P
(
‖Zu − (k/2, k/2)‖ > T

32n4

)
≤ P(|Xu + Yu − k| > T

32n4 ) + P(|Xu − Yu| > T
32n4 ).

Applying Markov’s inequality and the sixth moment estimates from Lemma 3.25, we

obtain

P
(
‖Zu − (k/2, k/2)‖ > T

32n4

)
≤ E

[
|Xu + Yu − k|6

](
32n4

T

)6
+ E

[
|Xu − Yu|6

](
32n4

T

)6
≤ 2Ck3

(
32n4

T

)6
where C is a finite constant. Thus, for K ≥ 0, v ∈ TK and k ≤ K,

P
(
‖Zv(k)− (k/2, k/2)‖ > T

32n4

)
≤ 2Ck3

(
32n4

T

)6
.

Now note that T̃v(k) is a sum of k independent exponential random variables of

parameter 1, and therefore has the same distribution as Xv(k) +Yv(k). Thus, again by

Lemma 3.25,

E
[
|T̃v(k)− k|6

]
≤ Ck3

and therefore

P
(
|T̃v(k)− k| > T

4n2

)
≤ E

[
|T̃v(k)− k|6

](
4n2

T

)6 ≤ Ck3
(

4n2

T

)6
.

We deduce that, for some finite constant C ′,

P
(
∃k ≤ K : ‖Zv(k)− (k/2, k/2)‖ > T

32n4 or |T̃v(k)− k| > T
4n2

)
≤

K∑
k=1

C ′k3n24

T 6
. (3.29)

Summing over k, this is at most C ′K4n24/T 6, and since K(n, T ) = O(n−1/8T ) ≤ O(T ),

we have

P
(
∃k ≤ K(n, T ) : ‖Zv(k)− (k/2, k/2)‖ > T

32n4 or |T̃v(k)− k| > T
4n2

)
≤ C ′′n24

T 2

for some finite constant C ′′.

Converting the above to a statement about Un,T , we have shown that

P(v ∈ Un,T ) ≥ 1− C ′′n24

T 2
,

and since there are 2K(n,T ) vertices in TK(n,T ),

E
[
|Un,T |

]
≥ 2K(n,T )

(
1− C ′′n24

T 2

)
.
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Obviously we also have

E
[
|Un,T |2

]
≤ 22K(n,T ),

and therefore by the Paley-Zygmund inequality,

P
(
|Un,T | ≥

1

T 2
2K(n,T )

(
1− C ′′n24

T 2

))
≥
(

1− 1

T 2

)2E
[
|Un,T |

]2
E
[
|Un,T |2

]
≥
(

1− 2

T 2

)(
1− C ′′n24

T 2

)2
.

The result follows.

Lemma 3.27. Define

Vn,T =
{
v ∈ TK(n,T ) : ‖Zv(k)−(k/2, k/2)‖ ≤ T

32n4 and |Tv(k)−k| ≤ 7T
8n2 ∀k ≤ K(n, T )

}
,

where K(n, T ) = dn7/8eT/n + d2T/n2e as in Lemma 3.26. Then there exists a finite

constant C such that for any T ≥ Cn48,

P
(
|Vn,T | ≥ 1

2T 2 2K(n,T )
)
≥ 1− T−3/2.

Proof. We claim that every v ∈ Un,T is also in Vn,T . By Lemma 3.26 this is sufficient

to complete the proof.

Take v ∈ Un,T . In particular, for each k ≤ K(n, T ), we have ‖Zv(k)− (k/2, k/2)‖ ≤
T

32n4 . This ensures that v satisfies the first condition required to be in Vn,T , but it also

implies that

R(Xv(k), Yv(k)) ≤
k
2 + T

32n4 + 1
k
2 −

T
32n4 + 1

=
1 + T

32n4(k/2+1)

1− T
32n4(k/2+1)

,

and so for k ≥ T
4n2 − 2,

R(Xv(k), Yv(k)) ≤
1 + 1

4n2

1− 1
4n2

≤ 1

(1− 1
4n2 )2

≤ 1

1− 1
2n2

, (3.30)

where we used the fact that 1 + x ≤ 1/(1− x) for x ∈ [0, 1).

Now, T̃v(k) consists of a sum of k independent exponential random variables of

parameter 1, which we call ev(0), . . . , ev(k − 1). For k ≥ bT/4n2c we then have, by

definition,

Tv(k) =

k−1∑
i=0

ev(i)

R(Xv(i), Yv(i))
≥

k−1∑
i=bT/4n2c

ev(i)

R(Xv(i), Yv(i))
.

Applying (3.30), this is at least

(
1− 1

2n2

) k−1∑
i=bT/4n2c

ev(i) =
(

1− 1

2n2

)(
T̃v(k)− T̃v(bT/4n2c)

)
.
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Since v ∈ Un,T , whenever k ≤ K(n, T ) we have |T̃v(k)− k| ≤ T/4n2, and we obtain

Tv(k) ≥
(

1− 1

2n2

)(
k−T/4n2−(bT/4n2c+T/4n2)

)
≥
(

1− 1

2n2

)(
k− 3T

4n2

)
≥ k− 7T

8n2
.

We also obviously have Tv(k) ≥ 0 ≥ k − 7T
8n2 when k < bT/4n2c; and since R(x, y) ≥ 1

for all x and y, we have Tv(k) ≤ T̃v(k) for all k. Thus we have shown that if v ∈ Un,T
then |Tv(k) − k| ≤ 7T/8n2 for all k ≤ K(n, T ), and we deduce that also v ∈ Vn,T , as

required.

We now want to move from discrete to continuous time. We need some more

notation. For v ∈ Nt and s ≤ t, let v(s) be the unique ancestor of v that is in Ns. Also

let gen(v) be the unique integer such that v ∈ Tgen(v).

Lemma 3.28. Recall the definition of Vn,T from Lemma 3.27. If v ∈ Vn,T then v ∈ Nt
for some t ≥ dn7/8eT/n+ d2T/n2e − T/n2, and

∣∣ gen(v(s))− s
∣∣ ≤ 7T

8n2
+ 1

for all s ≤ dn7/8eT/n+ d2T/n2e − T/n2 − 1.

Proof. If v ∈ Vn,T then |Tv(k)− k| ≤ 7T/8n2 for all k ≤ K(n, T ). In particular

Tv ≥ K(n, T )− T/n2 = dn7/8eT/n+ d2T/n2e − T/n2,

and therefore v ∈ Nt for some t ≥ dn7/8eT/n+ d2T/n2e − T/n2.

Now, for any s ≤ dn7/8eT/n+ d2T/n2e − T/n2 − 1, since v ∈ Vn,T ,

Tv(s) = Tv(gen(v(s))) ≥ gen(v(s))− 7T/8n2,

so since Tv(s) ≤ s (because v(s) ∈ Ns) we have

gen(v(s)) ≤ s+ 7T/8n2. (3.31)

Since s ≤ dn7/8eT/n + d2T/n2e − T/n2 − 1, the above implies in particular that

gen(v(s)) + 1 ≤ K(n, T ) = gen(v) and therefore we also have (again since v ∈ Vn,T )

Tv(s) + ev(s) = Tv(gen(v(s)) + 1) ≤ gen(v(s)) + 1 + 7T/8n2.

Combining this with the fact that Tv(s) + ev(s) > s (because v(s) ∈ Ns), we obtain

s < gen(v(s)) + 1 + 7T/8n2,

and combining this with (3.31) gives the result.

We can now prove the main result of this section.

Proof of Proposition 3.14. By Lemma 3.27, with probability at least 1 − 1/T 3/2, we

have |Vn,T | ≥ 1
2T 2 2K(n,T ). Suppose that v ∈ Vn,T and let t = dn7/8eT/n. Then
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by Lemma 3.28, gen(v(t)) ≥ t − 7T/8n2 − 1, and of course gen(v) = K(n, T ) =

dn7/8eT/n+ d2T/n2e. Thus the number of descendants that v(t) has in Vn,T is at most

2dn
7/8eT/n+d2T/n2e−(dn7/8eT/n−7T/8n2−1) ≤ 23T/n2

.

We deduce that if |Vn,T | ≥ 1
2T 2 2K(n,T ) then the number of distinct ancestors of particles

in Vn,T that are in Nt must be at least

2K(n,T )

2T 2 · 23T/n2 ≥ 2T/n
1/8−T/n2−2 log2 T−1.

For T ≥ Cn48 and C large the right-hand side is certainly larger than 2T/n
1/8−2T/n2

.

Now, if u ∈ Nt is an ancestor of a particle v ∈ Vn,T , and s ≤ t, then

‖Zu(s)− (s/2, s/2)‖ = ‖Zv(s)− (s/2, s/2)‖

≤
∥∥Zv(s)− (gen(v(s))

2 , gen(v(s))
2

)∥∥+ ‖
(gen(v(s))

2 , gen(v(s))
2

)
− ( s2 ,

s
2)
∥∥

≤ T

32n4
+

1

2
| gen(v(s))− s|

≤ T

32n4
+

1

2

( 7T

8n2
+ 1
)

where for the first inequality we used the triangle inequality, for the second we used

that v ∈ Vn,T , and for the third we again used that v ∈ Vn,T together with Lemma 3.28.

For T ≥ Cn48 and C large this is smaller than T/2n2, which completes the proof.

3.5.2 From the lead diagonal to other gradients: proof of Proposition

3.15

We will build up to the proof of Proposition 3.15 gradually, first constructing a suitable

candidate function hf,n, and then proving several lemmas that establish the required

properties of hf,n.

For µ ≥ λ > 0 let

κ(λ, µ) =
µ

λ
−
(√

2
(µ
λ
− 1

2

)1/2
− λ1/2

)2
− (1− µ1/2)2.

We have defined κ in such a way that, for µ ≥ λ > 0, if g(s) = (λs, µs) for s ∈ [0, 1]

then

K̃(g, 0, t) = κ(λ, µ)t.

We would like our function hf,n to begin with gradient (1/2, 1/2), but then to

transition in small steps to having gradient (f ′X(0), f ′Y (0)). In order to ensure that

K̃(hf,n, 0, t) remains positive for all small t, we need to check that κ(λ, µ) is strictly

positive for all the gradients (λ, µ) that hf,n passes through at small times. If κ was

concave (or even concave on the region where it is positive) then this would be trivial

since we could ask hf,n to transition linearly. Unfortunately there is a small region on

which κ is positive and not concave, so we have to use a more complicated argument.

This is done in the following lemma.

Lemma 3.29. For every 0 < λ ≤ µ such that κ(λ, µ) > 0, there exists a path γ(t) =

(γX(t), γY (t)), t ∈ [0, 1] and κ0 > 0 such that

61



(i) (γX(0), γY (0)) = (1/2, 1/2) and (γX(1), γY (1)) = (λ, µ);

(ii) κ(γ(t)) ≥ κ0 > 0 for all t ∈ [0, 1];

(iii) γ is piecewise linear and |γ′X(t)| ≤ 20 and |γ′Y (t)| ≤ 20 for all t ∈ [0, 1] such that

γ is differentiable at t;

(iv) γX(t) ∈ [3/2−
√

2, 10] and γY (t) ∈ [3/2−
√

2, 10] for all t ∈ [0, 1].

3/2−
√

21/2 3/2 +
√

2

3/2 +
√

2/2

10

3/2−
√

2

1/2

3/2 +
√

2

10

µ

λ

(λ, µ)

(λ, µ)

Figure 3-1: The pale green region is Υ1 and the pale orange region is Υ2. The thick blue
(solid) and red (dotted) paths show our definition of γ when (λ, µ) is in Υ1 and Υ2 respectively.

Proof. We define Υ = Υ1 ∪Υ2 where

Υ1 = {(λ, µ) : λ ∈ (3/2−
√

2, 3/2 +
√

2), µ ∈ [λ, 10)}

and

Υ2 = {(λ, µ) : µ ∈ (3/2 +
√

2, 10), λ ∈ [3/2 +
√

2, µ]}.

Figure 3-1 shows Υ1 and Υ2 in pale green and pale orange respectively. We show that

the statement of the Lemma holds for all the points (λ, µ) ∈ Υ and that κ(λ, µ) < 0 if

(λ, µ) /∈ Υ. It is easy to see that

κ(λ, λ) = −2λ+ 4
√
λ− 1 > 0 for λ ∈ (3/2−

√
2, 3/2 +

√
2). (3.32)

and this is concave as a function of λ. Since for 0 < λ ≤ µ we have

∂2κ(λ, µ)

∂λ2
= −(1/2)(2µ− λ)−3/2 − (2µ)λ−3/2 < 0
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and
∂2κ(λ, µ)

∂µ2
= −2(2µ− λ)−3/2 − (1/2)µ−3/2 < 0,

the functions κ(·, µ) on (0, µ] and κ(λ, ·) on [λ,∞) are concave for each fixed λ and µ

respectively. This means that if we move parallel to either axis, we have the concave

property; and so if for example κ(λ1, µ) > 0 and κ(λ2, µ) > 0 with λ1, λ2 ≤ µ, then

κ(λ, µ) > 0 for all λ ∈ [λ1, λ2].

We now take advantage of this concavity parallel to the axes. For every (λ, µ) ∈ Υ1

such that κ(λ, µ) > 0 we choose γ to be the union of the linear paths connecting

(1/2, 1/2) to (λ, λ) and then to (λ, µ). Then clearly γ satisfies (i) and (iv). Since

0 < λ ≤ µ ≤ 10 throughout Υ, the total length of the linear paths described is at most

20, and therefore we may choose a time parameterization of γ such that |γ′X(t)| ≤ 20 and

|γ′Y (t)| ≤ 20, so that γ satisfies (iii). We claim that γ also satisfies (ii). Indeed, by (3.32)

κ(γ(t)) is positive on the first linear segment; in particular κ(λ, λ) > 0, and since by as-

sumption κ(λ, µ) > 0, by concavity parallel to the axes κ(γ(t)) is positive on the second

linear segment too and κ(λ, µ) ≥ κ0 where κ0 := min{κ(1/2, 1/2), κ(λ, λ), κ(λ, µ)} > 0.

Now consider (λ, µ) ∈ Υ2 such that κ(λ, µ) > 0. Since λ ≥ 3/2 +
√

2/2 and µ < 10,

we have

∂κ(λ, µ)

∂λ
=

µ

λ2
− 1√

2µ− λ
− 1 ≤ 4µ

(3 +
√

2)2
− 1√

2µ− λ
− 1 < 0, (3.33)

so κ(λ′, µ) > κ(λ, µ) > 0 for every λ′ ∈ [3/2 +
√

2/2, λ]. In particular, κ(3/2 +
√

2/2, µ) > 0 and (3/2 +
√

2/2, µ) ∈ Υ1, so we can define γ as the union of the linear

paths connecting (1/2, 1/2) to (3/2 +
√

2/2, 3/2 +
√

2/2), then to (3/2 +
√

2/2, µ), and

then to (λ, µ). Then as above, γ clearly satisfies (i) and (iv) and can be parameterized

such that it satisfies (iii). Also κ(γ(t)) is positive on the first and second linear segments

by the analysis of the λ ∈ (3/2−
√

2, 3/2 +
√

2) case above, it is positive on the third

linear segment by (3.33) and κ(λ, µ) ≥ κ0. Thus γ satisfies (ii) too.

To complete our proof, it remains to show that κ(λ, µ) < 0 for (λ, µ) /∈ Υ. If

0 < λ ≤ µ ≤ 3/2−
√

2, this follows from the fact that for every λ ≤ 3/2−
√

2,

κ(λ, 3/2−
√

2) = −3/2−
√

2

λ
−λ+2

√
3− 2

√
2− λ− 3

2
+
√

2+2

√
3/2−

√
2 < 0, (3.34)

and for every t ∈ [0, 3/2−
√

2− µ],

d

dt
κ(λ+ t, µ+ t) =

(
∂κ(λ, µ)

∂λ
+
∂κ(λ, µ)

∂µ

) ∣∣∣∣
(λ,µ)=(λ+t,µ+t)

=
µ− λ

(λ+ t)2
+

1√
2µ+ t− λ

+
1√
µ+ t

− 2

≥ 1√
3/2−

√
2
− 2 > 0.
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Secondly, if 0 < λ ≤ 3/2−
√

2 < µ, then we use (3.34) plus the fact that

∂κ(λ, µ)

∂µ
= − 1

λ
+

2√
2µ− λ

+
1
√
µ
− 1 ≤ − 1

3/2−
√

2
+

3√
3/2−

√
2
− 1 < 0.

Finally, when 0 < λ ≤ µ and µ ≥ 10, the key fact is to observe that for every µ ≥ 10

∂κ(λ, µ)

∂µ
= − 1

λ
+

2√
2µ− λ

+
1
√
µ
− 1 ≤ − 1

µ
+

3
√
µ
− 1 < 0. (3.35)

Since κ(λ, 10) < 0 for λ ≤ 10, (3.35) gives that κ(λ, µ) < 0 for any µ ≥ 10 and λ ≤ 10;

and since κ(λ, λ) < 0 for λ ≥ 10, (3.35) gives that κ(λ, µ) < 0 whenever µ ≥ 10 and

λ ≥ 10. This completes the proof.

Take f ∈ G2
M such that d

dtK̃(f, 0, t)|t=0 > 0 and K̃(f, 0, t) > 0 for all t ∈ (0, 1].

Also fix n ∈ N and m ∈ N such that n ≥ m. We now construct a function h = hf,n,m
which depends on n and m; we will later show that for m sufficiently large (and n even

larger) the resulting function satisfies the properties of Proposition 3.15.

Let τ = mmdn7/8e/n. We will eventually choose n much larger than m, so that

τ is small. Also let λ = f ′X(0) and µ = f ′Y (0). Take γ as in Lemma 3.29 and for

j ∈ {0, 1, . . . ,m} define

λj = λ
(m)
j = γX(j/m), µj = µ

(m)
j = γY (j/m) and τj = τmj−m. (3.36)

Begin by defining h(s) = (s/2, s/2) = (λ0s, µ0s) for s ≤ τ0. Then recursively, for

each j = 1, . . . ,m, suppose that h(s) is defined for s ≤ τj−1 and set

h(s) = h(τj−1) +
(
λj(s− τj−1), µj(s− τj−1)

)
for s ∈ (τj−1, τj ].

Also define

h(s) = h(τ) +
(
f(2τ)− h(τ))

(s− τ
τ

)
for s ∈ (τ, 2τ ].

Finally, for each j ∈ {2τn, 2τn+ 1, . . . , n} let h(j/n) = f(j/n) and interpolate linearly

between these values.

Note that, since K̃ has only downward jumps and K̃(f, 0, t) > 0 for all t ∈ (0, 1],

we have infs∈[ν,1] K̃(f, 0, s) > 0 for every ν > 0. Thus we may choose ν = νf,m ∈ (0, 1]

such that

(a) ‖f(s)− (λs, µs)‖ ≤ s/m for all s ≤ ν,

(b) K̃(f, s, t) > 0 for all s ≤ ν and t ≥ s, and

(c) K̃(f, ν, 1) ≥ K̃(f, 0, 1)− 1/m.

Lemma 3.30. Suppose that µ ≥ λ > 0 and κ(λ, µ) > 0. For any m ≥ 2, j ∈ {1, . . . ,m}
and any s ∈ [τj−1, τj ],

‖hf,n,m(s)− (λjs, µjs)‖ ≤ 40τj−1/m.

Moreover, if 2τ ≤ ν, then for any s ∈ [τ, ν],

‖hf,n,m(s)− (λs, µs)‖ ≤ 40s/m.
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Proof. We begin by noting that for s ∈ [τj−1, τj ],

h(s)− (λjs, µjs) = h(τj−1)− (λjτj−1, µjτj−1), (3.37)

so for the first part of the lemma it suffices to show that for any j ∈ {1, . . . ,m},

‖h(τj−1)− (λjτj−1, µjτj−1)‖ ≤ 40τj−1/m. (3.38)

We prove (3.38) by induction. Recall that for each j, λj = γX(j/m), and by Lemma

3.29 (iii), |λj−1 − λj | ≤ 20/m and |µj − µj−1|≤ 20/m. Thus we first have

‖h(τ0)− (λ1τ0, µ1τ0)‖ = max{|λ0 − λ1|τ0, |µ0 − µ1|τ0} ≤ 20τ0/m.

Suppose that j ∈ {1, . . . ,m− 1} and (3.38) holds for j. By the triangle inequality,

|hX(τj)− λj+1τj | ≤ |hX(τj)− λjτj |+ |λjτj − λj+1τj |

and then by (3.37), this equals

|hX(τj−1)− λjτj−1|+ |λj − λj+1|τj .

Applying (3.38) and using the fact that |λj−1 − λj | ≤ 20/m, we obtain that

|hX(τj)− λj+1τj | ≤
40τj−1

m
+

20τj
m
≤ 40τj

m
.

By symmetry we also have |hY (τj) − µj+1τj | ≤ 40τj/m. Hence, by induction, (3.38)

holds for all j ∈ {1, . . . ,m}, proving the first part of the lemma.

For the second part, suppose that 2τ ≤ ν. Note first that for s ∈ [τ, 2τ ], h is linear

and therefore

‖h(s)− (λs, µs)‖ ≤ max
{
‖h(τ)− (λτ, µτ)‖, ‖h(2τ)− (2λτ, 2µτ)‖

}
.

By the first part of the lemma,

‖h(τ)− (λτ, µτ)‖ ≤ 40τm−1/m ≤ 40τ/m

and since h(2τ) = f(2τ), by property (a) of f ,

‖h(2τ)− (2λτ, 2µτ)‖ ≤ 2τ/m.

This proves the second part of the lemma for s ∈ [τ, 2τ ]; for s ∈ [2τ, ν], we note

that h linearly interpolates between values of f , and therefore for j such that s ∈
[j/n, (j + 1)/n],

‖h(s)− (λs, µs)‖ ≤ max
{
‖f( jn)− (λ jn , µ

j
n)‖, ‖f( j+1

n )− (λ j+1
n , µ j+1

n )‖
}

≤ j + 1

nm
≤ s+ 1/n

m
≤ 2s

m
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where we used (a) and the fact that 2τ ≥ 1/n.

Corollary 3.31. Suppose that µ ≥ λ > 0, κ(λ, µ) > 0 and m ≥ 1600, m ∈ N. Then

for any j ∈ {1, . . . ,m} and any s ∈ [τj−1, τj ],

µj
λj

(
1− 1600

m

)
≤ R∗(hf,n,m(s)) ≤ µj

λj

(
1 +

3200

m

)
,

and if 2τ ≤ ν then for any s ∈ [τ, ν]

µ

λ

(
1− 1600

m

)
≤ R∗X(hf,n,m(s)) + 1/2 ≤ R∗(hf,n,m(s)) ≤ µ

λ

(
1 +

3200

m

)
.

Proof. We begin with the lower bound on R∗(h(s)) for s ∈ [τj−1, τj ]. Since µ ≥ λ, we

have hY (s) ≥ hX(s), and therefore by the first part of Lemma 3.30,

R∗(h(s)) =
hY (s)

hX(s)
≥ µjs− 40τj−1/m

λjs+ 40τj−1/m
=
µj
λj

(1− 40τj−1/(mµjs)

1 + 40τj−1/(mλjs)

)
.

Using the fact that s ≥ τj−1, and then that 1/(1 + x) ≥ 1− x for x ≥ 0, this is at least

µj
λj

(
1− 40

mµj

)(
1− 40

mλj

)
.

By Lemma 3.29 (iv), we have λj ≥ 3/2−
√

2 ≥ 1/20 and similarly for µj , so the above

is at least
µj
λj

(1 − 1600/m), and the first lower bound on R∗(h(s)) follows. The first

upper bound is similar, using that 1/(1− x) ≤ 1 + 2x for x ∈ [0, 1/2]; since m ≥ 1600

and λj ≥ 1/20 we have 40/(mλj) ≤ 1/2, and we obtain

R∗(h(s)) ≤ µj
λj

(
1 +

40

mµj

)(
1 +

80

mλj

)
;

then since λj ≥ 1/20, µj ≥ 1/20 and m ≥ 1600, the product of the last two terms

reduces to the desired form.

The proof of the second part of the corollary, when s ∈ [τ, ν], is almost identical.

Indeed, if hY (s) ≥ hX(s) then R∗X(h(s)) + 1/2 = R∗(h(s)) and we use the same

argument but apply the second part of Lemma 3.30 rather than the first part. The same

applies to the lower bound even when hY (s) < hX(s), since in any caseR∗X(h(s))+1/2 ≥
hY (s)/hX(s). However, we have to make a slight modification to the upper bound when

hY (s) < hX(s); in this case, we instead have R∗X(h(s)) + 1/2 ≤ R∗(h(s)) where

R∗(h(s)) =
hX(s)

hY (s)
,

and then the argument above gives

R∗(h(s)) =
hX(s)

hY (s)
≤ λs+ 40s/m

µs− 40s/m
≤ λ

µ

(
1 +

40

λm

)(
1 +

80

µm

)
≤ λ

µ

(
1 +

3200

m

)
.

However, since λ ≤ µ, we have λ/µ ≤ 1 ≤ µ/λ and so the same conclusion holds.
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Corollary 3.32. Suppose that µ ≥ λ > 0, κ(λ, µ) > 0 and m ≥ 1600, m ∈ N. There

exists a finite constant C such that for any j ∈ {1, . . . ,m} and any s, t ∈ [τj−1, τj ] with

s ≤ t, we have

K̃(hf,n,m, s, t) ≥ κ(λj , µj)(t− s)−
C

m
(t− s),

and if 2τ ≤ ν then for any s, t ∈ [τ, ν] with s ≤ t, we have

K̃(hf,n,m, s, t) ≥ κ(λ, µ)(t− s)− C

m
(t− s).

Proof. We begin with the first statement. Using (3.3), since h(t) − h(s) = (λj(t −
s), µj(t− s)), we have

K̃(h, s, t) = −
∫ t

s
R∗(h(u))du+ 2

√
2

∫ t

s

√
R∗X(h(u))λj du

+ 2
√

2

∫ t

s

√
R∗Y (h(u))µj du− λj(t− s)− µj(t− s).

Since µ ≥ λ, we have hY (u) ≥ hX(u) for all u ≤ τ and therefore R∗X(h(u)) = R∗(h(u))−
1/2 and R∗Y (h(u)) = 1/2 for all u ≤ τ . Thus

K̃(h, s, t) = −
∫ t

s
R∗(h(u))du+ 2

√
2

∫ t

s

√
(R∗(h(u))− 1/2)λj du

+ 2
√
µj(t− s)− λj(t− s)− µj(t− s). (3.39)

By Corollary 3.31, for any u ∈ [s, t] we have

µj
λj

(
1− 1600

m

)
≤ R∗(h(u)) ≤ µj

λj

(
1 +

3200

m

)
and, using also that (1− x)1/2 ≥ 1− x for x ∈ [0, 1),

√
(R∗(h(u))− 1/2) ≥

(
µj
λj

(
1− 1600

m

)
− 1/2

)1/2

=
(µj
λj
− 1

2

)1/2(
1− 1600µj

mλj(µj/λj − 1/2)

)1/2

≥
(µj
λj
− 1

2

)1/2(
1− 3200

m

)
.

Substituting these estimates into (3.39), we have

K̃(h, s, t) ≥ −µj
λj

(
1 +

3200

m

)
(t− s) + 2

√
2
(µj
λj
− 1

2

)1/2
λ

1/2
j

(
1− 3200

m

)
(t− s)

+ 2
√
µj(t− s)− λj(t− s)− µj(t− s).

Recognising that

κ(λj , µj) = −µj
λj

+ 2
√

2
(µj
λj
− 1

2

)1/2
λ

1/2
j + 2µ

1/2
j − λj − µj ,
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we see that

K̃(h, s, t) ≥ κ(λj , µj)(t− s)−
3200µj
λjm

(t− s)− 2
√

2
(µj
λj
− 1

2

)1/2
λ

1/2
j

3200

m
(t− s)

and the first part of the result follows using Lemma 3.29 (iv).

The proof of the second part is almost identical, though since for u ∈ [τ, ν] we do

not have exactly h′X(u) = λ and h′Y (u) = µ, we must additionally use the bounds

h′X(u) =
f(2τ)− h(τ)

τ
≤ 2λτ + 2τ/m2 − λτ + 40τ/m

τ
≤ λ+

42

m

and similarly

h′X(u) ≥ λ− 42

m

and

µ− 42

m
≤ h′Y (u) ≤ µ+

42

m
.

With the addition of these estimates, the proof proceeds as before.

Corollary 3.32 essentially guarantees that K̃(hf,n,m, s, t) is positive for 0 ≤ s < t ≤
ν, provided that κ(λ, µ) > 0. We now need to show that K̃(hf,n,m, ν, t) is not too

negative for t ≥ ν. The following result will be used to check that K̃(f, ν, t) is closely

approximated by K̃(hf,n,m, ν, t).

Proposition 3.33. Suppose that 0 ≤ s ≤ t ≤ 1 and that f ∈ G2
M . Let fn be the

function in PLn constructed by setting fn(j/n) = f(j/n) for each j = 0, . . . , n and

interpolating linearly. Then

lim inf
n→∞

K̃(fn, s, t) ≥ K̃(f, s, t).

We prove this in Appendix 3.B.2. Later, in Proposition 3.37, we will also show that

the opposite inequality holds in certain circumstances. We now have the pieces in place

to prove Proposition 3.15.

Proof of Proposition 3.15. As usual let λ = f ′X(0), µ = f ′Y (0) and τ = mmdn7/8e/n,

with λj and µj as in (3.36) and τj = τmj−m, for j ∈ {0, 1, . . . ,m}. We will check that

hf,n,m satisfies the desired properties when m and n are sufficiently large. Without loss

of generality we assume that µ ≥ λ.

Since τ0n is an integer we have hf,n,m ∈ PL2
n, and since f ∈ G2

M it is easy to

see that hf,n,m ∈ G2
M too. Since ‖hf,n,m(s)‖ ≤ Ms and ‖f(s)‖ ≤ Ms for s ≤ 2τ =

2mmdn7/8e/n, and hf,n,m(j/n) = f(j/n) for j ≥ 2τn, by choosing n large enough that

2τM ≤ ε we have hf,n,m ∈ B(f, ε). This proves that hf,n,m satisfies (3.7) when n is

large.

For (3.8), note first that τ0 = dn7/8e/n. Take n large enough that 2τ < ν. Then

we claim that since limt→0 K̃(f, 0, t)/t > 0, we have κ(λ, µ) > 0. To see why the claim

holds, for small s we have ‖f ′(s) − (λ, µ)‖ ≤ 1/m and ‖f(s) − (λs, µs)‖ ≤ s/m. The
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same argument as in Corollary 3.31 then shows that for some finite constant C,

µ

λ

(
1− C

m

)
≤ R∗X(f(s)) +

1

2
≤ R∗(f(s)) ≤ µ

λ

(
1 +

C

m

)
and plugging these estimates into (3.3) with a = 0 and b = t and using standard

approximations shows that K̃(f, 0, t) ≤ κ(λ, µ)t + C ′t/m for some finite constant C ′.

This implies the claim.

Since κ(λ, µ) > 0, by Lemma 3.29 we may choose κ0 > 0 such that κ(γ(t)) ≥ κ0 for

all t ∈ [0, 1], and then κ(λj , µj) ≥ κ0 for all j ∈ {0, . . . ,m}. Corollary 3.32 then tells

us that for s ∈ [τj−1, τj ] we have

K̃(hf,n,m, τ0, s) ≥
j−1∑
i=1

(κ(λi, µi)− C/m)(τi − τi−1) + (κ(λj , µj)− C/m)(s− τj−1)

≥ (κ0 − C/m)(s− τ0),

and for s ∈ [τ, ν] we have

K̃(hf,n,m, τ0, s) ≥
m∑
i=1

(κ(λi, µi)− C/m)(τi − τi−1) + (κ(λ, µ)− C/m)(s− τ)

≥ (κ0 − C/m)(s− τ0).

Thus, by choosing m large enough, we may ensure that K̃(hf,n,m, τ0, s) ≥ κ0(s− τ0)/2

for all s ∈ [τ0, ν].

For s > ν, by the above argument we have

K̃(hf,n,m, τ0, s) ≥ K̃(hf,n,m, τ0, ν) + K̃(hf,n,m, ν, s)

≥ κ0(ν − τ0)/2 + K̃(hf,n,m, ν, s), (3.40)

and since κ0(ν− τ0)/2 increases to κ0ν/2 as n→∞ and K̃(f, ν, s) > 0 by (b), to show

(3.8) it suffices to show that for large n,

K̃(hf,n,m, ν, s) ≥ K̃(f, ν, s)− κ0ν/4.

But since h is the piecewise linear interpolation of f on the interval [ν, 1], this follows

from Proposition 3.33.

Finally, for (3.9), applying (3.40) with s = 1, we certainly have

K̃(hf,n,m, τ0, 1) ≥ K̃(hf,n,m, ν, 1);

by Proposition 3.33 the right-hand side converges to K̃(f, ν, 1) as n → ∞; and by (c)

we know that K̃(f, ν, 1) ≥ K̃(f, 0, 1)− 1/m. This completes the proof.
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3.6. Coupling ξT with simpler processes

One problem we face is that ξX and ξY are not independent, because their jump rates

at time t are functions of the pair (ξX(t), ξY (t)). However, if we already know that ξT

has remained near a fixed function f , then the jump rates are “almost deterministic”

and therefore ξX and ξY are “almost independent”. In order to take advantage of this

idea, we will construct new processes Z+ and Z− which have the maximal and minimal

jump rates (respectively) that ξT may have if it remains near f . We will couple these

processes with another process, Z, which will have the same distribution as ξT but will

be trapped between Z+ and Z−, as long as Z remains near f .

Recall the definitions of R−X(I, F, T ), R+
X(I, F, T ), R−Y (I, F, T ), R+

Y (I, F, T ), |I|, I+, I−,

x−(s, F ), x+(s, F ), y−(s, F ), y+(s, F ), ΓM,T (f, n) and Ij from Section 3.2.1. In what

follows, the reader can think of the case I = Ij and F = ΓM,T (f, n) for some function

f .

Let

V (I, F ) = [x−(I−, F ), x+(I−, F )]× [y−(I−, F ), y+(I−, F )].

Take z = (x, y) ∈ V (I, F ). Under a probability measure Qz = QI,F,Tz , let (X+(I− +

s), s ∈ |I|) be a compound Poisson process started from x with rate 2R+
X(I, F, T )T and

jumps that are exponentially distributed with parameter T , and let (Y+(I−+s), s ∈ |I|)
be an independent compound Poisson process started from y with rate 2R+

Y (I, F, T )T

and jumps that are exponentially distributed with parameter T . Let Z+ = (X+, Y+).

We now construct—again under QI,F,Tz —two more (pure jump) processes Z(I−+s)

and Z−(I− + s) for s ∈ |I| recursively as follows. Start by setting Z(I−) = z and

Z−(I−) = z. The jumps of both Z and Z− are subsets of the jumps of Z+. Suppose

that Z+ has a jump at time s, and that Z(s−) = z′. Let U be an independent

Uniform[0, 1] random variable. Since X+ and Y+ are independent, exactly one of X+

or Y+ jumps at time s. Suppose for a moment that X+ has a jump of size x′ > 0.

Then accept the jump for Z if U ≤ RX(z′)/R+
X(I, F, T ) and reject it otherwise; in

other words, set Z(s) = z′+ (x′, 0) with probability RX(z′)/R+
X(I, F, T ) and Z(s) = z′

otherwise. Accept the jump for Z− if U ≤ R−X(I, F, T )/R+
X(I, F, T ) and reject it

otherwise. Similarly, if Y+ has a jump of size y > 0, then accept the jump for Z if

U ≤ RY (z′)/R+
Y (I, F, T ), and accept it for Z− if U ≤ R−Y (I, F, T )/R+

Y (I, F, T ).

Recall that for F ⊂ E2, g ∈ E and an interval I ⊂ [0, 1], we say that g|I ∈ F |I if

there exists a function h ∈ F such that h(u) = g(u) for all u ∈ I. Let

Aξ(I, F, T ) =
{
ξT |I ∈ F |I

}
and

A(I, F, T ) =
{
Z|I ∈ F |I

}
.

Note that for any z ∈ V (I, F ), on the event A(I, F, T ), under QI,F,Tz we always

have

RX(Z(s)) ∈ [R−X(I, F, T ), R+
X(I, F, T )] and RY (Z(s)) ∈ [R−Y (I, F, T ), R+

Y (I, F, T )],

for all s ∈ I. Thus, by our construction:

(i) under QI,F,Tz , on the event A(I, F, T ), we have X−(s) ≤ X(s) ≤ X+(s) and

Y−(s) ≤ Y (s) ≤ Y+(s) for all s ∈ I;

(ii) the process (Z(s)1A(I∩[0,s],F,T ))s∈I under QI,F,Tz is equal in distribution to the
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process (ξT (s)1Aξ(I∩[0,s],F,T ))s∈I conditionally on ξT (I−) = z under Q;

(iii) under QI,F,Tz , the processes (X−, X+) and (Y−, Y+) are independent.

Furthermore, by the thinning property of Poisson processes,

(iv) under QI,F,Tz , the processes X− and X+ − X− are independent, as are Y− and

Y+ − Y−.

3.6.1 Applying the coupling to the upper bound: proof of Proposi-

tions 3.4 and 3.21

Recall the terminology “X+ case” and “X− case” from Section 3.2.1, and the defini-

tions of E+
X(I, F, T ) and E+

Y (I, F, T ). The main part of the proof of Proposition 3.4 is

the following lemma.

Lemma 3.34. Suppose that F ⊂ E2 and T > 1. Then for any I ⊂ [0, 1] and z ∈
V (I, F ),

Q
(
Aξ(I, F, T )

∣∣ ξT (I−) = z
)
≤ exp

(
− TE+

X(I, F, T )− TE+
Y (I, F, T )

)
.

Proof. For z ∈ V (I, F ), using (ii), (i) and (iii) in that order,

Q
(
Aξ(I, F, T )

∣∣ ξT (I−) = z
)

= QI,F,Tz

(
A(I, F, T )

)
≤ QI,F,Tz

(
X−(I+) ≤ x+(I+, F ), Y−(I+) ≤ y+(I+, F )

)
= QI,F,Tz

(
X−(I+) ≤ x+(I+, F )

)
QI,F,Tz

(
Y−(I+) ≤ y+(I+, F )

)
.

We will apply this bound when we are in the X− and Y− cases. Of course, we were

not forced to concentrate on the two upper boundaries x+(I+, F ) and y+(I+, F ), and

by considering the other permutations of boundaries we obtain upper bounds on the

same quantity of the form

QI,F,Tz

(
X+(I+) ≥ x−(I+, F )

)
QI,F,Tz

(
Y+(I+) ≥ y−(I+, F )

)
,

QI,F,Tz

(
X+(I+) ≥ x−(I+, F )

)
QI,F,Tz

(
Y−(I+) ≤ y+(I+, F )

)
and

QI,F,Tz

(
X−(I+) ≤ x+(I+, F )

)
QI,F,Tz

(
Y+(I+) ≥ y−(I+, F )

)
which we can apply in other cases as appropriate. Now, for any λ > 0, by Markov’s

inequality,

QI,F,Tz

(
X−(I+) ≤ x+(I+, F )

)
= QI,F,Tz

(
e−λX−(I+) ≥ e−λx+(I+,F )

)
≤ QI,F,Tz

[
e−λ(X−(I+)−X−(I−))

]
eλ(x+(I+,F )−x−(I−,F ))

= exp
(
− 2R−X(I, F, T )T |I| λ

T + λ
+ λ(x+(I+, F )− x−(I−, F ))

)
.
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In the X− case we have 2R−X(I, F, T )|I| > x+(I+, F ) − x−(I−, F ), so we can choose

the optimal value

λ = T

√
2R−X(I, F, T )|I|

x+(I+, F )− x−(I−, F )
− T > 0.

Simplifying gives

QI,F,Tz

(
X−(I+) ≤ x+(I+, F )

)
≤ exp

(
− T

(√
2R−X(I, F, T )|I| −

√
x+(I+, F )− x−(I−, F )

)2)
which equals exp

(
−TE+

X(I, F, T )
)

in the X− case. Similarly, in the X+ case, by using

QI,F,Tz

(
X+(I+) ≥ x−(I+, F )

)
≤ QI,F,Tz [exp

(
µ(X+(I+)−X+(I−))

)
− µ(x−(I+, F )− x+(I−, F ))]

for µ > 0, we obtain

QI,F,Tz

(
X+(I+) ≥ x−(I+, F )

)
≤ exp

(
− T

(√
2R+

X(I, F, T )|I| −
√
x−(I+, F )− x+(I−, F )

)2)
= exp

(
− TE+

X(I, F, T )
)

and when we are in neither the X− nor X+ case we can use a trivial upper bound of

1. By symmetry we obtain the same bounds in terms of Y . Applying these bounds in

the appropriate cases completes the proof.

Our main results in this section are now easy corollaries of Lemma 3.34.

Proof of Proposition 3.4. Recall that Ij = [j/n, (j+1)/n] and let V (j) = V (Ij ,ΓM,T (f, n)).

Note that the restrictions on z ensure that z ∈ V (i), and therefore by the Markov prop-

erty,

Q
(
ξT |[i/n,θ] ∈ ΓM,T (f, n)

∣∣
[i/n,θ]

∣∣ ξTi/n = z
)

≤
bθnc−1∏
j=i

sup
z′∈V (j)

Q
(
ξT |Ij ∈ ΓM,T (f, n)|Ij

∣∣ ξTj/n = z′
)

=

bθnc−1∏
j=i

sup
z′∈V (j)

Q
(
Aξ(Ij ,ΓM,T (f, n), T )

∣∣ ξTj/n = z′
)
.

The result now follows from Lemma 3.34.

Proof of Proposition 3.21. Let i = banc and ` = dbne. Let Vi = {w : ‖w − f(a)‖ <
1/n2}, and for j ∈ {i + 1, . . . , `} let Vj = {w : ‖w − f(j/n)‖ < 1/n2}. Note that, by
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the Markov property,

Q
(
ξT |[a,b] ∈ ΛM,T (f, n)

∣∣
[a,b]

∣∣ ξTa = z
)

≤
`−1∏
j=i

sup
w∈Vj

Q
(
ξT |Ij∩[a,b] ∈ ΛM,T (f, n)

∣∣
Ij∩[a,b]

∣∣ ξTj/n = w
)

=

`−1∏
j=i

sup
w∈Vj

Q
(
Aξ(Ij ∩ [a, b],ΛM,T (f, n), T )

∣∣ ξTj/n = w
)
.

The result now follows from Lemma 3.34, together with (3.12) and (3.13).

3.6.2 Applying the coupling to the lower bound: proofs of Lemmas

3.16, 3.17 and 3.18

We begin this section with the proof of Lemma 3.16, which links the probability that

we want to bound with our coupled compound Poisson processes.

Proof of Lemma 3.16. We begin by splitting [0, 1] into its subintervals Ij , j = 0, . . . , n−
1. Recall a previous definition: let Z0 = {(0, 0)} and, for j ∈ {1, . . . , n− 1}, define

Zj = {z ∈ [0,∞)2 : ‖z − f(j/n)‖ ≤ 1
2n2 }.

By applying the Markov property at each time j/n,

Q
(
ξT |[k/n,1] ∈ ΛM,T (f, n)|[k/n,1]

∣∣∣ ξT (k/n) = w
)

≥ Q
(
‖ξT (s)− f(s)‖ < 1/n2 ∀s ∈ Ij , ξT ( j+1

n ) ∈ Zj+1,

ξT |Ij ∈ G2
M,T |Ij ∀j ∈ {k, . . . , n− 1}

∣∣∣ ξT ( kn) = w
)

≥
n−1∏
j=k

inf
z∈Zj

Q
(∥∥ξT (s)− f(s)

∥∥ < 1/n2 ∀s ∈ Ij , ξT ( j+1
n ) ∈ Zj+1,

ξT |Ij ∈ G2
M,T |Ij

∣∣∣ ξT ( jn) = z
)
.

It therefore remains to show that for each j and any z ∈ Zj ,

Q
(∥∥ξT (s)− f(s)

∥∥ < 1/n2 ∀s ∈ Ij , ξT ( j+1
n ) ∈ Zj+1, ξ

T |Ij ∈ G2
M,T |Ij

∣∣∣ ξT ( jn) = z
)

≥ qXn,M,T (z, j, f) q̂Xn,M,T (z, j, f) qYn,M,T (z, j, f) q̂Yn,M,T (z, j, f). (3.41)

We now use the coupling from Section 3.6, with I = Ij and F = ΛM,T (f, n). We

simply write Qz as shorthand for Q
Ij ,ΛM,T (f,n),T
z . By property (ii) of the coupling, we

have

Q
(∥∥ξT (s)− f(s)

∥∥ < 1/n2 ∀s ∈ Ij , ξT ( j+1
n ) ∈ Zj+1, ξ

T |Ij ∈ G2
M,T |Ij

∣∣∣ ξT ( jn) = z
)

= Qz

(∥∥Z(s)− f(s)
∥∥ ≤ 1/n2 ∀s ∈ Ij , Z( j+1

n ) ∈ Zj+1, Z|Ij ∈ G2
M,T |Ij

)
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which, by property (i), is at least

Qz

(∥∥Z−(s)− f(s)
∥∥ ≤ 1

n2 ∀s ∈ Ij , Z−( j+1
n ) ∈ Zj+1, Z−|Ij ∈ G2

M,T |Ij ,

Z+(s)− Z−(s) = 0 ∀s ∈ Ij
)
.

By property (iv), this equals

Qz

(∥∥Z−(s)− f(s)
∥∥ ≤ 1

n2 ∀s ∈ Ij , Z−( j+1
n ) ∈ Zj+1, Z−|Ij ∈ G2

M,T |Ij
)

·Qz
(
Z+(s)− Z−(s) = 0 ∀s ∈ Ij

)
and finally, by property (iii), the above equals

Qz

(∣∣X−(s)− fX(s)
∣∣ ≤ 1

n2 ∀s ∈ Ij ,
∣∣X−( j+1

n )− fX( j+1
n )
∣∣ ≤ 1

2n2 , X−|Ij ∈ GM,T |Ij
)

·Qz
(∣∣Y−(s)− fY (s)

∣∣ ≤ 1
n2 ∀s ∈ Ij ,

∣∣Y−( j+1
n )− fY ( j+1

n )
∣∣ ≤ 1

2n2 , Y−|Ij ∈ GM,T |Ij
)

·Qz
(
X+(s)−X−(s) = 0 ∀s ∈ Ij

)
·Qz

(
Y+(s)− Y−(s) = 0 ∀s ∈ Ij

)
.

Noting that X+ −X− and Y+ − Y− are increasing, this is exactly

qXn,M,T (z, j, f) q̂Xn,M,T (z, j, f) qYn,M,T (z, j, f) q̂Yn,M,T (z, j, f).

Thus we have shown (3.41) and the proof is complete.

The proof of Lemma 3.17, which bounds the q̂ terms, is elementary.

Proof of Lemma 3.17. Recall that

q̂Xn,M,T (z, j, f) = Q
Ij ,ΛM,T (f,n),T
z

(
X+( j+1

n )−X−( j+1
n ) = 0

)
.

Also recall that under Q
Ij ,ΛM,T (f,n),T
z , the process X+ −X− jumps at rate

2
(
R+
X(Ij ,ΛM,T (f, n), T )−R−X(Ij ,ΛM,T (f, n), T )

)
T.

Therefore, for each j ∈ {0, . . . , n− 1} and z ∈ Zj , using (3.13),

q̂Xn,M,T (z, j, f) ≥ exp
(
− 2
(
R+
X(Ij ,ΓM,T (f, n), T )−R−X(Ij ,ΓM,T (f, n), T )

)
T/n

)
.

Since f ∈ G2
M , for j ≥

√
n, by (3.14) we have

q̂Xn,M,T (z, j, f) ≥ exp
(
− 4δM,T (j, n)T/n

)
,

and by symmetry

q̂Yn,M,T (z, j, f) ≥ exp
(
− 4δM,T (j, n)T/n

)
.

The result then follows from the deterministic bounds from (3.61), in Appendix 3.A.

The proof of Lemma 3.18 is much more delicate. Our next result provides a bound
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on compound Poisson processes. This will then be applied to prove Lemma 3.18.

Lemma 3.35. Suppose that δ, t, A > 0 and a ∈ R satisfy a < tA/2 and |a| ≤ δ/2.

Suppose also that R ≥ 1/2. Let (X(s), s ≥ 0) be a compound Poisson process of rate

RT whose jumps are exponentially distributed with parameter T .

Then for T > 2(A−a/t)3/2(4t+δ)

R1/2δ2((A−a/t)∧1)2
,

P(|a+X(s)−As| < δ ∀s ≤ t, |a+X(t)−At| < δ/2)

≥ 1

2
exp

(
− tT (

√
R−
√
A)2 − δ

(
1 +
√
R
(√

2t/δ + 1/2
))
T
)
.

Proof. The bulk of the work to prove Lemma 3.35 is done by showing the following

intermediate result. For T > 2A3/2(4t+δ)

R1/2δ2(A∧1)2
,

P(|X(s)−As| < δ ∀s ≤ t) ≥ 1

2
exp

(
−tT (

√
R−
√
A)2−δ(A∧1)

∣∣1−√R/A∣∣T). (3.42)

For any q < T and s ≥ 0, we have

E[eqX(s)] = exp
( Rqs

1− q/T

)
.

Fix a = T (1−
√
R/A); then elementary calculations show that

E[X(s)eaX(s)]

E[eaX(s)]
= As.

Let (σs)s≥0 be the natural filtration of X, and define a new probability measure µ by

setting
dµ

dP

∣∣∣
σs

=
eaX(s)

E[eaX(s)]
= exp

(
aX(s)− Ras

1− a/T

)
.

Then, by the definition of µ, for any δ′ > 0 we have

P(|X(s)−As| < δ′ ∀s ≤ t) = µ
[

exp
(
− aX(t) +

Rat

1− a/T

)
1{|X(s)−As|<δ′ ∀s≤t}

]
and using the bound |X(t)−At| < δ′ and simplifying we obtain

P(|X(s)−As| < δ′ ∀s ≤ t)

≥ exp
(
− tT (

√
R−
√
A)2 − |a|δ′)

)
µ(|X(s)−As| < δ′ ∀s ≤ t). (3.43)

Taking δ′ = δ(A ∧ 1), it remains to bound µ(|X(s) − As| < δ(A ∧ 1) ∀s ≤ t) from

below.

One may easily check that (X(s)−As, s ≥ 0) is a martingale under µ, and therefore

by Jensen’s inequality, (eν(X(s)−As), s ≥ 0) is a submartingale under µ for any ν < T−a
(the upper bound on ν is required to ensure that the expectation is finite). By Doob’s
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submartingale inequality, for any ν ∈ (0, T − a), we have

µ(∃s ≤ t : X(s)−As ≥ δ(A ∧ 1)) = µ
(

sup
s≤t

eν(X(s)−As) ≥ eνδ(A∧1)
)

≤ µ[eν(X(t)−At)]e−νδ(A∧1) (3.44)

and for any ν < 0 we have

µ(∃s ≤ t : X(s)−As ≤ −δ(A ∧ 1)) = µ
(

sup
s≤t

eν(X(s)−As) ≥ e−νδ(A∧1)
)

≤ µ[eν(X(t)−At)]eνδ(A∧1). (3.45)

Now, for any ν < T − a,

µ[eν(X(t)−At)] = E[e(a+ν)X(t)]e−Rat/(1−a/T )−Aνt = exp
( R(a+ ν)t

1− (a+ ν)/T
− Rat

1− a/T
−Aνt

)
,

and simplifying we obtain

µ[eν(X(t)−At)] = exp
( Aνt

1− ν
T (A/R)1/2

−Aνt
)

= exp
( Aν2t

(R/A)1/2T − ν

)
.

It is then easy to check that for T > 2A3/2(4t+δ)

R1/2δ2(A∧1)2
, each of the probabilities in (3.44)

and (3.45) can be made smaller than e−3/2 < 1/4 by choosing ν = ± 2
δ(A∧1) . Thus we

have

µ(|X(s)−As| < δ(A ∧ 1) ∀s ≤ t) ≥ 1/2

for such T . Substituting this into the lower bound in (3.43), using δ′ = δ(A ∧ 1), gives

(3.42).

Lemma 3.35 now requires us to deal with the position of our process at the endpoints

of the intervals Ij .

Let At(a) = A − a/t. Note that if |X(s) − At(a)s| < δ/2 for all s ≤ t, then

|a+X(s)−As| < δ for all s ≤ t and |a+X(t)−At| < δ/2. Thus

P(|a+X(s)−As| < δ ∀s ≤ t, |a+X(t)−At| < δ/2) ≥ P(|X(s)−At(a)s| < δ/2 ∀s ≤ t).

Now (3.42) tells us that the latter probability is at least

1

2
exp

(
− tT (

√
R−

√
At(a))2 − δ(At(a) ∧ 1)

2

∣∣∣1− ( R

At(a)

)1/2∣∣∣T). (3.46)

Using the fact that (1− x)1/2 ≥ 1− x1/2 for x ∈ [0, 1], we have

t(
√
R−

√
At(a))2 ≤

(
R+A+

δ

2t
− 2
√
AR
(

1− δ

2tA

)1/2)
t

≤ (
√
R−
√
A)2t+

δ

2
+
√

2δRt.
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and
δ(At(a) ∧ 1)

2

∣∣∣1− ( R

At(a)

)1/2∣∣∣ ≤ δ

2

(
1 +

( R

At(a)

)1/2)
≤ δ

2
(1 +

√
R).

Substituting these estimates into (3.46) gives

1

2
exp

(
− tT (

√
R−
√
A)2 − δ

(
1 +
√
R
(√

2t/δ + 1/2
))
T

)
,

as required.

We now apply Lemma 3.35 to prove Lemma 3.18. However we still need to consider

two cases: if fX does not change much over the interval Ij then we may simply ask

our process not to jump over that interval, and a bound similar to that in the proof of

Lemma 3.17 is better than the estimate provided by Lemma 3.35.

Proof of Lemma 3.18. Recall that

qXn,3M,T (z, j, f) = Q
Ij ,Λ3M,T (f,n),T
z

(∣∣X−(s)− fX(s)
∣∣ ≤ 1

n2 ∀s ∈ Ij ,∣∣X−( j+1
n )− fX( j+1

n )
∣∣ ≤ 1

2n2 , X−|Ij ∈ G3M,T |Ij
)

Write Qz as shorthand for Q
Ij ,Λ3M,T (f,n),T
z .

Since f ∈ G2
M , j ≥ 1 and n ≥ 2M , under Qz we also have, for any s ∈ Ij ,

X−(s) ≥ x ≥ fX
( j
n

)
− 1

2n2
≥ j

Mn
− 1

2n2
≥ 3j

3Mn
− 1

3Mn
≥ j + 2

3Mn
− 1

3Mn
=
j + 1

3Mn

≥ s

3M
,

and if
∣∣X−( j+1

n )− fX( j+1
n )
∣∣ ≤ 1

2n2 then also

X−(s) ≤ X−( j+1
n ) ≤ fX( j+1

n ) + 1
2n2 ≤M j+1

n + 1
2n2 ≤ 3Ms.

Thus in fact, under the conditions of the lemma, X−|Ij is always in G3M,T |Ij , so

qXn,3M,T (z, j, f)

= Q
Ij ,Λ3M,T (f,n),T
z

(∣∣X−(s)− fX(s)
∣∣ ≤ 1

n2 ∀s ∈ Ij ,
∣∣X−( j+1

n )− fX( j+1
n )
∣∣ ≤ 1

2n2

)
.

(3.47)

For the remainder of this proof, for I ⊂ [0, 1], we write R̂−X(I) as shorthand for

R−X(I,ΛM,T (f, n), T ), and similarly for R̂+
X(I), R̂−Y (I) and R̂+

Y (I). (Recall that we

wrote R−X(I) in Section 3.6 and Appendix 3.A to mean R−X(I,ΓM,T (f, n), T ).)

Case 1: fX( j+1
n ) ≤ x+ 1

2n2 .

Note that since z ∈ Zj , we have x ≤ fX( jn) + 1
2n2 ≤ fX( j+1

n ) + 1
2n2 , and therefore

|x − fX(s)| ≤ 1
2n2 for all s ∈ Ij . Thus (3.47) can be bounded in the following trivial

way:

qXn,3M,T (z, j, f) ≥ Qz
(
X−(s) = x ∀s ∈ Ij) = Qz

(
X−( j+1

n ) = x).
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Under Qz, X− jumps at rate 2R̂−X(j)T , so we deduce that

qXn,3M,T (z, j, f) ≥ exp
(
−

2R̂−X(j)T

n

)
. (3.48)

On the other hand we have∫ (j+1)/n

j/n

(√
2R∗X(f(s))−

√
f ′X(s)

)2
ds

≥ 2

∫ (j+1)/n

j/n
R∗X(f(s))ds− 2

∫ (j+1)/n

j/n

√
2R∗X(f(s))n

(
fX( j+1

n )− fX( jn)
)
ds

+ fX( j+1
n )− fX( jn).

By (3.14),

R∗X(f(s)) ≥ R̂+
X(j)− δM,T (j, n) ≥ R̂−X(j)− δM,T (j, n),

so since fX( j+1
n )− fX( jn) ≤ 1

n2 and R∗X(f(s)) ≤M for all s,

∫ (j+1)/n

j/n

(√
2R∗X(f(s))−

√
f ′X(s)

)2
ds ≥

2R̂−X(j)− 2δM,T (j, n)

n
− 2
√

2M1/2

n3/2
.

The result now follows from this and (3.48).

Case 2: fX( j+1
n ) > x+ 1

2n2 .

Note that X− jumps at rate 2R̂−X(j)T and has exponential jumps of parameter T under

Qz. We therefore aim to apply Lemma 3.35, with A = n(fX( j+1
n )− fX( jn)), δ = 1/n2,

t = 1/n and a = x− fX(j/n). We need to check that a < tA/2; to see this, note that

since z ∈ Z(j) and we are in Case 2,

2a = 2
(
x− fX( jn)

)
≤ 1

2n2 + x− fX( jn) < fX( j+1
n )− fX( jn) = tA.

It is also easy to check that for T > 8n9/2M3/2, T is large enough that the conclusion

of Lemma 3.35 holds. Thus applying Lemma 3.35 to (3.47) gives

qXn,3M,T (z, j, f) ≥ 1

2
exp

(
− T

n

(√
2R̂−X(j)−

√
n
(
fX( j+1

n )− fX( jn)
))2

− 1

n2

(
1 +

√
2R̂−X(j)

(√
2n+ 1

2

))
T

)
.

Since f ∈ G2
M , we have R̂−X(j) ≤M and therefore

1 +

√
2R̂−X(j)

(√
2n+ 1/2

)
≤ 1 +

√
2M
(√

2n+ 1/2
)
≤ 2(M + 1)n1/2.

Thus

qXn,3M,T (z, j, f)

≥ 1

2
exp

(
− T

n

(√
2R̂−X(j)−

√
n
(
fX( j+1

n )− fX( jn)
))2
− 2(M + 1)T

n3/2

)
. (3.49)
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Noting that since f ∈ PL2
n we have n

(
fX( j+1

n )− fX( jn)
)

= f ′(s) for all s ∈ Ij , and

by (3.14)

(
R∗X(f(s))− δM,T (j, n)

)
∨ 0 ≤ R̂−X(j) ≤ R̂+

X(j) ≤ R∗X(f(s)) + δM,T (j, n),

we deduce that

2

n
R̂−X(j) ≤

∫ (j+1)/n

j/n
2R∗X(f(s))ds+

2δM,T (j, n)

n

and using also that
√

(a− b) ∧ 0 ≥
√
a−
√
b for a, b ≥ 0,

1

n

√
2R̂−X(j)n

(
fX( j+1

n )− fX( jn)
)

≥
∫ (j+1)/n

j/n

√
2R∗X(f(s))f ′X(s)ds− 1√

n

√
2δM,T (j, n)

(
fX( j+1

n )− fX( jn)
)
.

Thus

1

n

(√
2R̂−X(j)−

√
n
(
fX( j+1

n )− fX( jn)
))2

≤
∫ (j+1)/n

j/n

(√
2R∗X(f(s))−

√
f ′(s)

)2
ds+

2δM,T (j, n)

n

+
1√
n

√
2δM,T (j, n)

(
fX( j+1

n )− fX( jn)
)
.

This combines with (3.49) to give the result.

3.7. The final details for the upper bound

3.7.1 Compactness and semicontinuity

There are a few more technical issues that must be resolved in order to complete the

proof of the upper bound in Theorem 3.1. One of the remaining ingredients is to prove

that the set of functions that we are interested in can be covered by a finite collection of

small balls around suitably chosen functions. Recall that PLn is the subset of functions

in E that are linear on each interval [i/n, (i+1)/n] for all i = 0, . . . , n−1 and continuous

on [0, 1]. For F ⊂ E and r > 0, write Bd(F, r) =
⋃
f∈F Bd(f, r), where Bd(f, r) is the

ball of radius r about f in the metric d.

Lemma 3.36. Suppose that F ⊂ E2 and M > 1. For any n ≥ 4M , there exist

N ∈ N ∪ {0} and g1, . . . , gN ∈ G2
4M ∩ PL2

n such that

F ∩G2
M,T ⊂

N⋃
i=1

(
B∆n(gi, 1/n

2) ∩Bd(gi, 1/n)
)
⊂ Bd(F, 2/n)

for all T ≥ (4Mn)3/2.

We will prove this in Appendix 3.B.1.

In order to check that the supremum of our rate function K̃ over f ∈ Bd(F, ε) is

close to the supremum over f ∈ F when ε is small, we will need to show that K̃ has
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some form of upper semi-continuity.

Proposition 3.37. Suppose that 0 < θ ≤ 1 and there exists M ∈ (1,∞) such that

f, fn ∈ G2
M for all n. Suppose also that either f is continuous at θ, or θ = 1. If

d(fn, f)→ 0 then

lim sup
n→∞

K̃(fn, 0, θ) ≤ K̃(f, 0, θ).

The following simple corollary of Proposition 3.37 is written in a more convenient

form.

Corollary 3.38. Suppose that M ∈ (1,∞) and F ⊂ E2 is closed. Then

lim
ε→0

sup
f∈Bd(F,ε)∩G2

M

K̃(f, 0, 1) ≤ sup
f∈F∩G2

M

K̃(f, 0, 1).

We will prove Proposition 3.37 and Corollary 3.38 in Appendix 3.B.3.

3.7.2 The result for fixed T : proof of Propositions 3.7 and 3.8

Proof of Proposition 3.7. Recall that g ∈ G2
M ∩ PL2

n. By Markov’s inequality, for any

κ > 0,

P
(
NT

(
ΓM,T (g, n), θ

)
≥ κ

)
≤ E

[ ∑
v∈NT

1{ZTv |[0,θ]∈ΓM,T (g,n)|[0,θ]}

]
1

κ
,

and by Lemma 3.3 (Many-to-one),

E
[ ∑
v∈NT

1{ZTv |[0,θ]∈ΓM,T (g,n)|[0,θ]}

]
= Q

[
1{ξT |[0,θ]∈ΓM,T (g,n)|[0,θ]}e

∫ θT
0 R(ξs)ds

]
.

Now, if ξT |[0,θ] ∈ ΓM,T (g, n)|[0,θ], then by Lemma 3.6,

∫ θT

0
R(ξs)ds = T

∫ θ

0
R(TξT (s))ds ≤ T

∫ bθnc/n
0

R∗(g(s))ds+ Tη(M,n, T ),

and therefore

Q
[
1{ξT |[0,θ]∈ΓM,T (g,n)|[0,θ]}e

∫ θT
0 R(ξs)ds

]
≤ Q

(
ξT |[0,θ] ∈ ΓM,T (g, n)|[0,θ]

)
eT
∫ bθnc/n
0 R∗(g(s))ds+Tη(M,n,T ).

We also know from Proposition 3.4 that

Q(ξT |[0,θ] ∈ ΓM,T (g, n)|[0,θ])

≤ exp

(
− T

bθnc−1∑
j=0

(
E+
X(Ij ,ΓM,T (g, n), T ) + E+

Y (Ij ,ΓM,T (g, n), T )
))
,

and by Proposition 3.5 that, if g = (gX , gY ),

bθnc−1∑
j=d
√
ne

E+
X(Ij ,ΓM,T (g, n), T ) ≥

∫ bθnc/n
d
√
ne/n

(√
2R∗X(g(s))−

√
g′X(s)

)2
ds−O

(M4

n1/4
+
M3n

T 1/2

)
.
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Since g ∈ G2
M , we also have

∫ d√ne/n
0

(√
2R∗X(g(s))−

√
g′X(s)

)2
ds ≤

∫ d√ne/n
0

2R∗X(g(s))ds+

∫ d√ne/n
0

g′X(s)ds

≤ 2M2d
√
ne

n
+
Md
√
ne

n
≤ 4M2

√
n

(3.50)

so

bθnc−1∑
j=d
√
ne

E+
X(Ij ,ΓM,T (g, n), T ) ≥

∫ bθnc/n
0

(√
2R∗X(g(s))−

√
g′X(s)

)2
ds−O

(M4

n1/4
+
M3n

T 1/2

)

and by symmetry the same bound holds for Y . Recalling from Lemma 3.6 that

η(M,n, T ) = O
(
M4

n1/2 + M3n
T 1/3

)
, we deduce that

P
(
NT

(
ΓM,T (g, n), θ

)
≥ κ

)
≤ e−T

∫ bθnc/n
0

(√
2R∗X(g(s))−

√
g′X(s)

)2
ds−T

∫ bθnc/n
0

(√
2R∗Y (g(s))−

√
g′Y (s)

)2
ds

· eO
(
M4T

n1/4
+M3nT 2/3

)
+T

∫ bθnc/n
0 R∗(g(s))ds · 1

κ

=
1

κ
e
TK̃(g,0,bθnc/n)+O

(
M4T

n1/4
+M3nT 2/3

)

as required, where for the last equality we used the fact that g ∈ G2
M ∩ PL2

n, and

therefore K̃(g, 0, s) =
∫ s

0 R
∗(g(u))du− I(g, 0, s) for all s.

Proposition 3.8 essentially establishes the upper bound in Theorem 3.1 with high

probability for a fixed (large) T . The proof mostly involves using Lemma 3.2 and

the technical results stated in Section 3.7.1 to ensure that we can cover our set in

a suitable way with finitely many balls around piecewise linear functions, and then

applying Proposition 3.7.

Proof of Proposition 3.8. Take M ≥M0 and the other parameters as in the statement

of the Proposition. By Lemma 3.2,

P(∃v ∈ NT : ZTv 6∈ G2
M,T ) ≤ e−δ0T 1/3

.

By Corollary 3.38, since F is closed we may choose n large enough such that n ≥ 4M

and

sup
f∈Bd(F,2/n)∩G2

4M

K̃(f, 0, 1) ≤ sup
f∈F∩G2

4M

K̃(f, 0, 1) + ε/3.

By Lemma 3.36 we may choose N ∈ N and g1, . . . , gN ∈ G2
4M ∩ PL2

n such that

F ∩G2
M,T ⊂

N⋃
i=1

(
B∆n(gi, 1/n

2) ∩Bd(gi, 1/n)
)
⊂ Bd(F, 2/n)

for all T ≥ (4Mn)3/2. Recall that ΓM,T (gi, n) = B∆n(gi, 1/n
2) ∩ Bd(gi, 1/n) ∩ G2

M,T .
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Then for any A ≥ 0,

P
(
NT (F ) ≥ eAT

)
≤ P

(
∃v ∈ NT : ZTv 6∈ G2

M,T

)
+

N∑
i=1

P
(
NT

(
ΓM,T (gi, n)

)
≥ eAT

N

)
≤ e−δ0T 1/3

+
N∑
i=1

P
(
NT

(
ΓM,T (gi, n)

)
≥ eAT

N

)
. (3.51)

By Proposition 3.7, for each i we have

P
(
NT

(
ΓM,T (gi, n)

)
≥ eAT

N

)
≤ N

eAT
exp

(
TK̃(gi, 0, 1) +O

(M4T

n1/4
+M3nT 2/3

))
,

and combining this with (3.51) we see that

P
(
NT (F ) ≥ eAT

)
≤ e−δ0T 1/3

+
N2

eAT
max

i∈{1,...,N}
exp

(
TK̃(gi, 0, 1) +O

(M4T

n1/4
+M3nT 2/3

))
.

By our choice of g1, . . . , gN and n, we have

max
i∈{1,...,N}

K̃(gi, 0, 1) ≤ sup
f∈Bd(F,2/n)∩G2

4M

K̃(f, 0, 1) ≤ sup
f∈F∩G2

4M

K̃(f, 0, 1) + ε/3

and therefore

1

T 1/3
logP

(
NT (F ) ≥ eAT

)
≤ (−δ0) ∨

(
sup

f∈F∩G2
4M

K̃(f, 0, 1)T 2/3 −AT 2/3 +
εT 2/3

3
+O

(M4T 2/3

n1/4

))
.

Increasing n if necessary so that the O(M
4T 2/3

n1/4 ) term is smaller than εT 2/3

3 , and choosing

A = sup
f∈F∩G2

4M

K̃(f, 0, 1) + ε,

we have

lim
T→∞

1

T 1/3
logP

(
NT (F, θ) ≥ eAT

)
≤ −δ0.

This is precisely the statement of the proposition, but with 4M in place of M . Since

we only assumed that M ≥M0 in the proof, the proposition holds when M ≥ 4M0.

3.7.3 Paths with K(f) = −∞ are unlikely: proof of Lemma 3.9

Before proving Lemma 3.9, we need to relate K to K̃.

Lemma 3.39. Suppose that M > 1. If F ⊂ E2 is closed and supf∈F K(f) = −∞,

then there exists ε > 0 such that

sup
f∈B(F,ε)∩G2

M,1

inf
θ∈[0,1]

K̃(f, 0, θ) < 0.
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Proof. If the result is not true, then for each n ∈ N we may choose fn ∈ B(F, 1/n)∩G2
M,1

such that

inf
θ∈[0,1]

K̃(fn, 0, θ) ≥ −1/n.

It is easy to check that G2
M,1 is closed and totally bounded. Since (E2, d) is complete,

G2
M,1 is compact. We may therefore find a subsequence (fnj )j≥1 such that d(fnj , f∞)→

0 as j →∞ for some f∞ ∈ G2
M,1. Since F ∩G2

M,1 is closed, and d(f∞, F ∩G2
M,1) = 0,

we must in fact have f∞ ∈ F ∩G2
M,1. On the other hand, by Proposition 3.37, for any

θ ∈ [0, 1] such that f∞ is continuous at θ,

K̃(f∞, 0, θ) ≥ lim sup
j→∞

K̃(fnj , 0, θ) ≥ 0.

But f∞ is non-decreasing and therefore continuous almost everywhere, and t 7→ K̃(f, 0, t)

has only downward jumps, so we must have K̃(f∞, 0, θ) ≥ 0 for all θ ∈ [0, 1]. Thus

K(f∞) ≥ 0, which contradicts the hypothesis of the lemma.

We can now prove Lemma 3.9, which says that if F is closed and supf∈F K(f) =

−∞, then with high probability NT (F ) is zero.

Proof of Lemma 3.9. Choose M ≥ M0. Since G4M ⊂ G4M,1, by Lemma 3.39 we may

choose n0 ≥ 4M such that

sup
f∈B(F,2/n0)∩G2

4M

inf
θ∈[0,1]

K̃(f, 0, θ) < 0.

Let

η = − sup
f∈B(F,2/n0)∩G2

4M

inf
θ∈[0,1]

K̃(f, 0, θ) > 0. (3.52)

Then take n ≥ n0 such that the error term in Proposition 3.7 is smaller than ηT/3 for

T sufficiently large, and such that (4M)2/n ≤ η/3.

By Lemma 3.36 we may choose N ∈ N∪{0} and g1, . . . , gN ∈ G2
4M ∩PL2

n such that

F ∩G2
M,T ⊂

N⋃
i=1

(
B∆n(gi, 1/n

2) ∩Bd(gi, 1/n)
)
⊂ Bd(F, 2/n)

for all T ≥ (4Mn)3/2.

For each i = 1, . . . , N , note that since gi ∈ G2
4M , by the definition of K̃, for any

0 ≤ s ≤ t ≤ 1 we have

K̃(gi, 0, t) ≤ K̃(gi, 0, s) + (4M)2(t− s). (3.53)

In particular, the function t 7→ K̃(gi, 0, t) has only downward jumps, and therefore its

infimum is achieved. Thus, by (3.52), we may choose θi such that

K̃(gi, 0, θi) = inf
θ∈[0,1]

K̃(gi, 0, θ) ≤ −η.
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Let θ̂i = dθine/n. Using (3.53) again, we then have

K̃(gi, 0, θ̂i) ≤ −η + (4M)2/n ≤ −2η/3 (3.54)

where the last inequality holds because we chose n such that (4M)2/n ≤ η/3.

Now, by our choice of g1, . . . , gN , we have

NT (F ) ≤ NT ((G2
M,T )c) +

N∑
i=1

NT (ΓM,T (gi, n))

and therefore

P(NT (F ) ≥ 1) ≤ P
(
NT ((G2

M,T )c) ≥ 1
)

+
N∑
i=1

P
(
NT (ΓM,T (gi, n)) ≥ 1

)
. (3.55)

By Lemma 3.2, the first term on the right-hand side above is at most e−δ0T
1/3

. Also,

since a population that is extinct at time θ must also be extinct at time 1, for each i

we have

P
(
NT (ΓM,T (gi, n)) ≥ 1

)
≤ P

(
NT (ΓM,T (gi, n), θ̂i) ≥ 1

)
.

Since θ̂i is an integer multiple of 1/n, by Proposition 3.7 we have

P
(
NT (ΓM,T (gi, n), θ̂i) ≥ 1

)
≤ exp

(
TK̃(gi, 0, θ̂i) +O

(M4T

n1/4
+M3nT 2/3

))
≤ exp(−ηT/3),

where the last inequality follows from (3.54) and our choice of n. Returning to (3.55),

we have shown that

P(NT (F ) ≥ 1) ≤ e−δ0T 1/3
+Ne−ηT/3,

which completes the proof.

3.7.4 Lattice times to continuous time: proof of Proposition 3.10

Before moving on to the proof of Proposition 3.10, we state and prove two lemmas that

will check that paths of particles are not drastically changed by rescaling by a slightly

different value of T .

Lemma 3.40. Suppose that M > 1, t ≥ 3M and t− 1 ≤ s ≤ t. For any F ⊂ E2, we

have

Ns(F ∩G2
M,s) ≤ Nt

(
B(F, 3M/t)

)
.

Proof. Suppose that u ∈ Ns satisfies Zsu ∈ F ∩ G2
M,s. Take any v ∈ Nt such that

v is a descendant of u. We claim that d(Xs
u, X

t
v) ≤ 3M/t, which means that for all

τ ∈ [−3M/t, 1 + 3M/t],

Xt
v(τ − 3M/t)− 3M/t ≤ Xs

u(τ) ≤ Xt
v(τ + 3M/t) + 3M/t

where f(τ) is interpreted to equal f(0) for τ < 0 and f(1) for τ > 1. Since Zsu ∈ F , the
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claim plus its equivalent Y statement ensure that Ztv ∈ B(F, 3M/t), which is enough

to complete the proof.

To prove the claim, first note that it holds when τ ≤ 0, since in this case Xs
u(τ) =

Xs
u(0) = Xt

v(0) = Xt
v(τ). If τ > 0, since s ≤ t and

τs ≥ τ(t− 1) = t(τ − τ/t) ≥ t
(
τ − 1 + 3M/t

t

)
≥ t
(
τ − 3M

t

)
,

we have

Xs
u(τ) = Xs

v(τ) ≥ Xt
v(τ − 3M

t ).

Also, since Xs
u ∈ G2

M,s, for any τ ∈ [0, 1] we have

Xs
u(τ) =

1

s
Xu(τs) =

1

t
Xu(τs) +

(
1− s

t

)
Xs
u(τ)

≤ 1

t
Xv(τt) +

( t− s
t

)
M(1 + 2s−2/3)

≤ Xt
v(τ) +

M

t
(1 + 2s−2/3) ≤ Xt

v(τ) +
3M

t

as required. If τ > 1 then Xs
u(τ) = Xs

u(1) and then the argument above gives that that

Xs
u(1) ≤ Xt

v(1) + 3M/t = Xt
v(τ) + 3M/t.

Lemma 3.41. Suppose that M > 2, T ≥ 2 and t ∈ [T − 1, T ]. If Nt((G
2
M,t)

c) ≥ 1 then

either NT ((G2
M/2,T )c) ≥ 1 or NT−1((G2

M/2,T−1)c) ≥ 1.

Proof. Suppose there exists v ∈ Nt such that Ztv ∈ (G2
M,t)

c. It is possible that either

Xt
v or Y t

v (or both) is the reason for Ztv falling outside G2
M,t; without loss of generality

assume that it isXt
v. Then there exists s ∈ [0, 1] such that eitherXt

v(s) > M(s+2t−2/3),

or Xt
v(s) < s/M − 2t−2/3. In the first case, take w ∈ NT such that w is a descendant

of v. Then

XT
w (s) =

1

T
Xw(sT ) ≥ t

T

1

t
Xv(st) >

1

2
M(s+ 2t−2/3) ≥ M

2
(s+ 2T−2/3)

so ZTw ∈ (G2
M/2,T )c. In the second case, let u be the ancestor of v in NT−1. Then

XT−1
u (s) =

1

T − 1
Xu(s(T − 1)) ≤ t

T − 1

1

t
Xv(st) <

t

T − 1

( s
M
− 2t−2/3

)
≤ 2s

M
− 2(T − 1)−2/3

so ZT−1
u ∈ (G2

M/2,T−1)c. This completes the proof.

Proof of Proposition 3.10. We begin with the first part of the result. Take ε > 0. We
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start by noting that

P
(
∃t ∈ [T − 1, T ] :

1

t
logNt(F ) ≥ sup

f∈F∩G2
M

K̃(f, 0, 1) + ε
)

≤ P
(
∃t ∈ [T − 1, T ] :

1

t
logNt(F ∩G2

M,t) ≥ sup
f∈F∩G2

M

K̃(f, 0, 1) + ε
)

+ P
(
∃t ∈ [T − 1, T ] : Nt((G

2
M,t)

c) ≥ 1
)
. (3.56)

We show that the right-hand side is exponentially small in T . By Corollary 3.38, we

can choose ε′ ∈ (0, 1) such that

sup
f∈B(F,ε′)∩G2

M

K̃(f, 0, 1) ≤ sup
f∈F∩G2

M

K̃(f, 0, 1) + ε/3.

By Lemma 3.40, provided that 3M/T ≤ ε′, we have

Nt(F ∩G2
M,t) ≤ NT (B(F, ε′))

for all t ∈ [T − 1, T ]. Therefore for large T

P
(
∃t ∈ [T − 1, T ] :

1

t
logNt(F ∩G2

M,t) ≥ sup
f∈F∩G2

M

K̃(f, 0, 1) + ε
)

≤ P
( 1

T − 1
logNT (B(F, ε′)) ≥ sup

f∈F∩G2
M

K̃(f, 0, 1) + ε
)

≤ P
( 1

T
logNT (B(F, ε′)) ≥ sup

f∈B(F,ε′)∩G2
M

K̃(f, 0, 1) + ε/3
)
.

Then Proposition 3.8 tells us that this is at most exp(−δ0T
1/3/2) for large T . Substi-

tuting this into (3.56), we have

P
(
∃t ∈ [T − 1, T ] :

1

t
logNt(F ) ≥ sup

f∈F∩G2
M

K̃(f, 0, 1) + ε
)

≤ exp(−δ0T
1/3/2) + P

(
∃t ∈ [T − 1, T ] : Nt((G

2
M,t)

c) ≥ 1
)
. (3.57)

For the remaining term, Lemma 3.41 tells us that for T ≥ 2,

P(∃t ∈ [T − 1, T ] : Nt((G
2
M,t)

c) ≥ 1)

≤ P(NT ((G2
M/2,T )c) ≥ 1) + P(NT−1((G2

M/2,T−1)c) ≥ 1).

By Lemma 3.2, this is at most 2 exp
(
− δ0(T − 1)1/3

)
. Returning to (3.57), we have

P
(
∃t ∈ [T − 1, T ] :

1

t
logNt(F ) ≥ sup

f∈F∩G2
M

K̃(f, 0, 1) + ε
)

≤ exp(−δ0T
1/3/2) + 2 exp

(
− δ0(T − 1)1/3

)
.
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By the Borel-Cantelli lemma,

P
(

lim sup
t→∞

1

t
logNt(F ) ≥ sup

f∈F∩G2
M

K̃(f, 0, 1) + ε
)

= 0,

and since ε > 0 was arbitrary, we deduce the first part of the result.

The proof when supf∈F K(f) = −∞ is very similar. By Lemma 3.39, we may

choose ε′′ > 0 such that

sup
f∈B(F,ε′′)∩G2

M,1

K(f) = −∞. (3.58)

Then

P(∃t ∈ [T − 1, T ] : Nt(F ) ≥ 1) ≤ P(∃t ∈ [T − 1, T ] : Nt(F ∩G2
M,t) ≥ 1)

+ P(∃t ∈ [T − 1, T ] : Nt((G
2
M,t)

c) ≥ 1). (3.59)

As argued above, by Lemmas 3.41 and 3.2 the last term on the right-hand side is at

most 2 exp
(
− δ0(T − 1)1/3

)
provided that T ≥ 2. For the first term on the right-hand

side, by Lemma 3.40, provided that 3M/T ≤ ε′′ we have

P(∃t ∈ [T − 1, T ] : Nt(F ∩G2
M,t) ≥ 1)

≤ P(NT (B(F, ε′′)) ≥ 1)

≤ P(NT (B(F, ε′′) ∩G2
M,1) ≥ 1) + P(NT ((G2

M,1)c) ≥ 1).

Due to (3.58), we can apply Lemma 3.9 to tell us that the first term on the right-hand

side above is at most e−δ0T
1/3/2, and Lemma 3.2 to tell us that the second term on the

right-hand side is at most e−δ0T
1/3

. Returning to (3.59), and applying the Borel-Cantelli

lemma, we have

P(lim sup
t→∞

Nt(F ) ≥ 1) = 0.

This completes the proof.
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Appendix

3.A. Deterministic bounds on the rate function

We use the same notation as in Section 3.6. Our main aim in this section is to prove

Proposition 3.5 and Lemma 3.6, showing that the bounds obtained in Section 3.6, in

terms of E+
X(Ij ,ΓM,T (f, n), T ), look something like the growth rate seen in our main

theorem. This work involves tedious approximations of sums and integrals. Most of

the work is in bounding R∗ in terms of R+ and R−, which is done using the following

lemma. Throughout this section we write R−X(j) = R−X(Ij ,ΓM,T (f, n), T ) and similarly

for R+
X , R−Y and R+

Y .

Lemma 3.42. Suppose that M > 1, n ≥ 2M , f |Ij ∈ G2
M |Ij , j ≥ n1/2 and s ∈ Ij.

Then

R+
X(j)− δM,T (j, n) ≤ R∗X(f(s)) ≤ R−X(j) + δM,T (j, n) (3.60)

where

δM,T (j, n) =
(
6M3n1/2 + 2M2n

T

)(
fX( j+1

n )− fX( jn)
)

+Mn1/2
(
fY ( j+1

n )− fY ( jn)
)

+ 7M3

n3/2 + 3M3n
T .

Moreover,
n−1∑

j=d
√
ne

δM,T (j, n)

n
≤ 14M4

n1/2
+

5M3n

T
. (3.61)

Proof. We begin with the upper bound in (3.60), and claim first that for any j ∈
{0, 1, . . . , n− 1} we have

fY

( j
n

)
≤
(
R−X(j) +

1

2

)(
fX

(j + 1

n

)
+

1

n2
+

1

T

)
+

1

n2
. (3.62)

To see why this is true, by the definition of R−X(j), for any ε > 0 we may take g ∈
ΓM,T (f, n) and s ∈ Ij such that

RX(Tg(s)) ≤ R−X(j) + ε,

and then
gY (s) + 1/T

gX(s) + 1/T
− 1

2
≤ RX(Tg(s)) ≤ R−X(j) + ε.

Noting that gY (s) ≥ gY ( jn) ≥ fY ( jn) − 1/n2 and gX(s) ≤ gX( j+1
n ) ≤ fX( j+1

n ) + 1/n2,

we see that
fY ( jn)− 1/n2 + 1/T

fX( j+1
n ) + 1/n2 + 1/T

− 1

2
≤ R−X(j) + ε.

Since ε > 0 was arbitrary, the left-hand side must in fact be at most R−X(j), and then

rearranging gives (3.62).

We now aim to bound R∗X(f(s)) above for s ∈ Ij . We concentrate first on the case
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that fY (s) > fX(s). Whenever this holds, using (3.62),

R∗X(f(s)) =
fY (s)

fX(s)
− 1

2
=
fY ( jn)

fX(s)
− 1

2
+
fY (s)− fY ( jn)

fX(s)

≤
(
R−X(j) + 1/2

)(
fX( j+1

n ) + 1/n2 + 1/T
)

+ 1
n2

fX(s)
− 1

2
+
fY (s)− fY ( jn)

fX(s)
.

Writing

(
R−X(j) +

1

2

)(
fX
( j+1
n

)
+

1

n2
+

1

T

)
=
(
R−X(j) +

1

2

)
fX(s) +

(
R−X(j) +

1

2

)(
fX
( j+1
n

)
− fX(s) +

1

n2
+

1

T

)
and substituting this into the bound above, we have (for fY (s) > fX(s))

R∗X(f(s)) ≤ R−X(j) +

(
R−X(j) + 1

2

)(
fX( j+1

n )− fX(s) + 1
n2 + 1

T

)
+ 1

n2 + fY (s)− fY ( jn)

fX(s)
.

The first term on the right-hand side is the important one, and we now aim to bound the

other terms. Since f |Ij ∈ G2
M |Ij , we have fX(s) ≥ s/M , and since also f ∈ ΓM,T (f, n),

R−X(j) ≤ RX(Tf(s)) ≤ Ms+ 1/T

s/M
− 1

2
= M2 +

M

sT
− 1

2
, (3.63)

so

R∗X(f(s)) ≤ R−X(j)+

(
M2 + M

sT

)(
fX( j+1

n )− fX( jn) + 1
n2 + 1

T

)
+ 1

n2 + fY ( j+1
n )− fY ( jn)

s/M
.

This is true in the case fY (s) > fX(s), but when fY (s) ≤ fX(s) we have R∗X(f(s)) =

1/2 ≤ R−X(j), so the inequality above trivially holds in that case too. Taking s ≥ j/n ≥
n−1/2, and combining some of the terms, we obtain the upper bound in (3.60).

The lower bound in (3.60) is similar. We choose g ∈ ΓM,T (f, n) and s ∈ [ jn ,
j+1
n ] such

that RX(Tg(s)) ≥ R+
X(j)−1/n2. If RX(Tg(s)) = 1/2 then R+

X(j) ≤ 1/2+1/n2, so the

lower bound on that interval is trivial; we may therefore assume that RX(Tg(s)) > 1/2

and then we have a similar bound to (3.62):

fY

(j + 1

n

)
≥
(
R+
X(j) +

1

2

)(
fX

( j
n

)
− 1

n2

)
− 1

n2
− 1

T
. (3.64)

We then apply this essentially as in the proof of the upper bound to obtain

R∗X(f(s)) ≥ R+
X(j)−

(
R+
X(j) + 1

2

)(
fX(s)− fX( jn) + 1

n2

)
+ 1

n2 + 1
T + fY ( j+1

n )− fY (s)

fX(s)
.

In place of (3.63) we must use the slightly more involved bound, for j ≥
√
n and

n ≥ 2M ,

R+
X(j) ≤

M j+1
n + 1

n2 + 1
T

1
M

j
n −

1
n2 + 1

T

−1

2
≤

3M j
n + 1

T
j

2Mn

−1

2
= 6M2+

2Mn

jT
−1

2
≤ 6M2+

2M
√
n

T
−1

2
.
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Applying this and taking s ≥ j/n ≥ n−1/2, and combining terms, gives the lower bound

in (3.60).

To prove (3.61), summing over j ≥ n1/2 and telescoping gives

n−1∑
j=d
√
ne

δM,T (j, n)

n
≤
(6M3

n1/2
+

2M2

T

)
fX(1) +

M

n1/2
fY (1) +

7M3

n3/2
+

3M3n

T

Using that fX(1) ≤M and fY (1) ≤M , and combining terms, gives the result.

3.A.1 Proof of Proposition 3.5

We first give a lemma which handles the cross-term that appears when multiplying out

the quadratics involved in Proposition 3.5.

Lemma 3.43. Suppose that f ∈ PL2
n ∩G2

M , θ ∈ (0, 1], M > 1 and n ≥ 2M . Then for

any k ∈ {d
√
ne, . . . , bθnc − 1},

∫ bθnc/n
k/n

√
R∗X(f(s))f ′X(s)ds ≥

bθnc−1∑
j=k

√
R+
X(j)

n
(x+
j+1 − x

−
j )− 8M5/2

n1/4
− 4M2n1/2

T 1/2
.

Proof. Take s ∈ [ jn ,
j+1
n ] for some j ∈ {0, 1, . . . , n − 1}. Note that since f ∈ PLn, we

have

f ′X(s) = n(f( j+1
n )− f( jn)) ≥ n

(
x+
j+1 − 1/n2 − x−j − 1/n2

)
∨ 0.

Using the elementary inequality
√

(a− b) ∨ 0 ≥ a1/2 − b1/2 valid for all a, b ≥ 0, we

obtain √
f ′X(s) ≥ n1/2(x+

j+1 − x
−
j )1/2 −

√
2n−1/2.

Thus∫ (j+1)/n

j/n

√
R∗X(f(s))f ′X(s)ds ≥

(
(x+
j+1 − x

−
j )1/2 −

√
2/n

) ∫ (j+1)/n

j/n

√
nR∗X(f(s))ds

and since f ∈ G2
M , R∗X(f(s)) ≤M2 for all s > 0, so

∫ (j+1)/n

j/n

√
R∗X(f(s))f ′X(s)ds ≥ (x+

j+1 − x
−
j )1/2

∫ (j+1)/n

j/n

√
nR∗X(f(s))ds−

√
2Mn−3/2.

We now use the lower bound in (3.60) to see that for j ≥
√
n,∫ (j+1)/n

j/n

√
nR∗X(f(s))ds ≥

∫ (j+1)/n

j/n

√
(nR+

X(j)− nδM,T (j, n)) ∨ 0 ds

=

√(R+
X(j)

n
−
δM,T (j, n)

n

)
∨ 0
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Again using
√

(a− b) ∨ 0 ≥ a1/2 − b1/2, we therefore have, for j ≥
√
n,

∫ (j+1)/n

j/n

√
R∗X(f(s))f ′X(s)ds

≥

√
R+
X(j)

n

(
x+
j+1 − x

−
j

)
−
√

2M

n3/2
−
√
δM,T (j, n)

n
(x+
j+1 − x

−
j )1/2. (3.65)

By the Cauchy-Schwartz inequality,

n−1∑
j=k

√
δM,T (j, n)

n
(x+
j+1 − x

−
j )1/2 ≤

( n−1∑
j=k

δM,T (j, n)

n

n−1∑
i=k

(x+
i+1 − x

−
i )

)1/2

≤
( n−1∑
j=k

δM,T (j, n)

n
(fX(1) + 1/n)

)1/2

and applying (3.61), together with the fact that fX(1) ≤M , gives

( n−1∑
j=k

δM,T (j, n)

n
(f(1) + 1/n)

)1/2

≤
(28M5

n1/2
+

10M4n

T

)1/2
≤ 6M5/2

n1/4
+

4M2n1/2

T 1/2
.

Summing (3.65) over k ≤ j ≤ bθnc − 1 and substituting the above bound gives the

result.

We can now prove our main proposition for this section.

Proof of Proposition 3.5. We first claim that for each j = 0, . . . , n− 1 we have

E+
X(Ij ,ΓM,T (f, n), T ) ≥

2R−X(j)

n
− 2

√
2R+

X(j)

n
(x+
j+1 − x

−
j ) + x−j+1 − x

+
j −

4

n2
. (3.66)

Indeed, in either the X+ case or the X− case, this follows directly from the definition

of E+
X , even without the 4/n2 error term on the right-hand side. If we are in neither

the X+ nor the X− case, then 2R−X(j)/n ≤ x+
j+1 − x

−
j and 2R+

X(j)/n ≥ x−j+1 − x
+
j , so

2R−X(j)

n
− 2

√
2R+

X(j)

n
(x+
j+1 − x

−
j ) + x−j+1 − x

+
j

≤ x+
j+1 − x

−
j − 2

√(
(x−j+1 − x

+
j ) ∨ 0

)
(x+
j+1 − x

−
j ) +

(
x−j+1 − x

+
j

)
∨ 0

=
(√

x+
j+1 − x

−
j −

√(
x−j+1 − x

+
j

)
∨ 0
)2

and using
√

(a− b) ∨ 0 ≥ a1/2 − b1/2 we have√(
x−j+1 − x

+
j

)
∨ 0 ≥

√(
x+
j+1 − x

−
j − 4/n2

)
∨ 0 ≥

√
x+
j+1 − x

−
j − 2/n,
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so in this case

2R−X(j)

n
− 2

√
2R+

X(j)

n
(x+
j+1 − x

−
j ) + x−j+1 − x

+
j

≤ 4/n2 ≤ E+
X(Ij ,ΓM,T (f, n), T ) + 4/n2

and the claim is proved.

Now write K = bθnc. By the upper bound in (3.60), for any j ≥ n1/2,

∫ j+1
n

j
n

R∗X(f(s))ds ≤
R−X(j)

n
+
δM,T (j, n)

n
.

Summing over k ≤ j ≤ K − 1 and applying (3.61) gives

∫ K/n

k/n
R∗X(f(s))ds ≤

K−1∑
j=k

R−X(j)

n
+

14M4

n1/2
+

5M3n

T
.

Lemma 3.43 gives that

∫ K/n

k/n

√
R∗X(f(s))f ′X(s)ds ≥

K−1∑
j=k

√
R+
X(j)

n
(x+
j+1 − x

−
j )− 8M5/2

n1/4
− 4M2n1/2

T 1/2
.

Also ∫ K/n

k/n
f ′X(s)ds ≤

K−1∑
j=k

(
f( j+1

n )− f( jn)
)
≤

K−1∑
j=k

(
x−j+1 + 1/n2 − x+

j + 1/n2
)

≤
K−1∑
j=k

(
x−j+1 − x

+
j

)
+ 2/n.

Putting these bounds together with (3.66), and combining error terms, we obtain

∫ K/n

k/n

(√
2R∗X(f(s))−

√
f ′X(s)

)2
ds ≤

K−1∑
j=k

E+
X(Ij ,ΓM,T (f, n), T ) +O

(M4

n1/4
+
M3n

T 1/2

)
,

completing the proof.

3.A.2 Proof of Lemma 3.6

The proof of Lemma 3.6 is relatively straightforward. The upper and lower bounds are

very similar, but quite lengthy, so we separate them out into two proofs.

Proof of Lemma 3.6: upper bound. Write K = bθnc. We split the integral from 0 to θ

into three parts:

∫ θ

0
R(Tg(s))ds ≤

∫ 3MT−2/3

0
R(Tg(s))ds+

∫ d√ne/n
3MT−2/3

R(Tg(s))ds+

∫ θ

d
√
ne/n

R(Tg(s))ds.

(3.67)
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For the first term on the right-hand side, note that for any g ∈ G2
M,T and s ≤ 3MT−2/3,

R(Tg(s)) ≤ MT (s+ 2T−2/3) + 1

1
≤MT (3M + 2)T−2/3 + 1 ≤ 6M2T 1/3.

For the second term on the right-hand side of (3.67), we note that for s > 3MT−2/3

we have 2T−2/3 ≤ 2
3s/M and therefore, since g ∈ G2

M,T ,

R(Tg(s)) ≤ MT (s+ 2T−2/3) + 1

T (s/M − 2T−2/3)
≤
MT (s+ 2s

3M ) + 1

T s
3M

≤ 3M2
(

1 +
2

3M

)
+

3M

Ts

≤ 6M2 + T−1/3.

We now consider the last term in (3.67), but work with any k ≥ d
√
ne; since g ∈

ΓM,T (f, n), by definition of R+
X and R+

Y we have∫ θ

k/n
R(Tg(s))ds =

∫ θ

k/n
RX(Tg(s))ds+

∫ θ

k/n
RY (Tg(s))ds

≤
K∑
j=k

∫ j+1
n

j
n

R+
X(Ij ,ΓM,T (f, n), T )ds+

K∑
j=k

∫ j+1
n

j
n

R+
Y (Ij ,ΓM,T (f, n), T )ds

=
K∑
j=k

R+
X(j)

n
+

K∑
j=k

R+
Y (j)

n
. (3.68)

By the lower bound in (3.60), for any s ∈ [ jn ,
j+1
n ],

R+
X(j) ≤ R∗X(f(s)) + δM,T (j, n),

so using (3.61) and the fact that f is M -good,

K∑
j=k

R+
X(j)

n
≤
∫ (K+1)/n

k/n
R∗X(f(s))ds+

K∑
j=k

δM,T (j, n)

n

≤
∫ (K+1)/n

k/n
R∗X(f(s))ds+O

(M4

n1/2
+
M3n

T

)
≤
∫ K/n

k/n
R∗X(f(s))ds+O

(M4

n1/2
+
M3n

T

)
.

By symmetry we also have

K∑
j=k

R+
Y (j)

n
≤
∫ K/n

k/n
R∗Y (f(s))ds+O

(M4

n1/2
+
M3n

T

)
.

Substituting these bounds into (3.68) gives the upper bound in the second part of

the lemma. For the first part of the lemma, returning to (3.67) and substituting in our

estimates above for the three terms on the right-hand side, we have∫ θ

0
R(Tg(s))ds ≤

∫ K/n

k/n
R∗X(f(s))ds+O

( M3

T 1/3
+
M4

n1/2
+

1

T 1/3n1/2
+
M3n

T

)
.
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Since R∗X(f(s)) ≥ 0 for all s, the result follows.

Proof of Lemma 3.6: lower bound. Note that, again writing K = bθnc but now with

any k satisfying d
√
ne ≤ k ≤ K,∫ θ

k/n
R(Tg(s))ds ≥

∫ K/n

k/n
R(Tg(s))ds.

Since g ∈ ΓM,T (f, n), by definition of R−X and R−Y we have∫ θ

k/n
R(Tg(s))ds =

∫ θ

k/n
RX(Tg(s))ds+

∫ θ

k/n
RY (Tg(s))ds

≥
K−1∑
j=k

∫ j+1
n

j
n

R−X(Ij ,ΓM,T (f, n), T )ds+

K−1∑
j=k

∫ j+1
n

j
n

R−Y (Ij ,ΓM,T (f, n), T )ds

=

K−1∑
j=k

R−X(j)

n
+

K−1∑
j=k

R−Y (j)

n
.

By the upper bound in (3.60), for any s ∈ [ jn ,
j+1
n ], we have R−X(j) ≥ R∗X(f(s)) −

δM,T (j, n), so using (3.61) and the fact that f is M -good,

K−1∑
j=k

R−X(j)

n
≥
∫ K/n

k/n
R∗X(f(s))ds−

K−1∑
j=k

δM,T (j, n)

n

≥
∫ K/n

k/n
R∗X(f(s))ds−O

(M4

n1/2
+
M3n

T

)
.

By symmetry we also have

K−1∑
j=k

R−Y (j)

n
≥
∫ K/n

k/n
R∗Y (f(s))ds−O

(M4

n1/2
+
M3n

T

)
.

Combining these bounds gives the result.

3.A.3 Proof of Lemma 3.22

The main difference between Lemma 3.22 and our previous deterministic bounds on the

rate function is that it requires us to consider more general time intervals than those of

the form [j/n, (j + 1)/n]. Lemma 3.44 will do most of the work required, and uses the

uniform structure of ΛM,T (f, n) to get better bounds than are possible for ΓM,T (f, n).

Lemma 3.44. Suppose that M,T > 1, n ≥ 2M and f ∈ PL2
n ∩ G2

M . Then for any

j ∈ {d
√
ne, . . . , n− 1} and u, v such that j

n ≤ u < v ≤ j+1
n ,

∫ v

u

(√
2R∗X(f(s))−

√
f ′X(s)

)2
ds

≤ E+
X

(
[u, v],ΛM,T (f, n), T

)
+

6δM,T (j, n)

n
+2

√
2δM,T (j, n)

n

(
fX( j+1

n )− fX( jn)
)
+

14M

n3/2
.

Proof. As in the proof of Lemma 3.18, for I ⊂ [0, 1] we write R̂−X(I) as shorthand for
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R−X(I,ΛM,T (f, n), T ), and similarly for R̂+
X(I), R̂−Y (I) and R̂+

Y (I). We also write, for

s ∈ [0, 1],

x−(s) = x−(s,ΛM,T (f, n)) = inf{gX(s) : g ∈ ΛM,T (f, n)}

and similarly for x+(s), y−(s) and y+(s).

By (3.14) and the fact that f is linear on Ij (and therefore on [u, v]), we have∫ v

u

(√
2R∗X(f(s))−

√
f ′X(s)

)2
ds

= 2

∫ v

u
R∗X(f(s))ds+

∫ v

u
f ′X(s)ds− 2

∫ v

u

√
2R∗X(f(s))f ′X(s)ds

≤ 2R̂−X(Ij)(v − u) + 2δM,T (j, n)(v − u) + fX(v)− fX(u)

− 2

∫ v

u

√
2R∗X(f(s))

fX(v)− fX(u)

v − u
ds. (3.69)

Applying (3.14) and using the elementary inequality
√

(a− b) ∨ 0 ≥
√
a −
√
b, valid

for all a, b ≥ 0, for any s ∈ Ij we have

√
R∗X(f(s)) ≥

√(
R̂+
X(Ij)− δM,T (j, n)

)
∨ 0

≥
√
R̂+
X(Ij)−

√
δM,T (j, n) ≥

√
R̂+
X([u, v])−

√
δM,T (j, n)

so we have∫ v

u

√
2R∗X(f(s))

fX(v)− fX(u)

v − u
ds

≥
∫ v

u

(√
2R̂+

X([u, v])−
√

2δM,T (j, n)
)√fX(v)− fX(u)

v − u
ds

≥
√

2R̂+
X([u, v])(fX(v)− fX(u))(v − u)−

√
2δM,T (j, n)

n

(
fX( j+1

n )− fX( jn)
)
. (3.70)

Using again that
√

(a− b) ∨ 0 ≥
√
a−
√
b we have√

fX(v)− fX(u) ≥
√

(x+(v)− 1/n2 − (x−(u) + 1/n2)) ∨ 0

≥
√
x+(v)− x−(u)−

√
2/n2,

and since f is M -good, and therefore by (3.14) R+
X([u, v]) ≤M2+δM,T (j, n), we deduce

that√
2R̂+

X([u, v])(fX(v)− fX(u))(v − u)

≥
√

2R̂+
X([u, v])(x+(v)− x−(u))(v − u)−

2
√
M2 + δM,T (j, n)

n3/2
.

Substituting this into (3.70), and using that√
M2 + δM,T (j, n) ≤

√
M2 +

√
δM,T (j, n) ≤M + δM,T (j, n) + 1
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gives that∫ v

u

√
2R∗X(f(s))

fX(v)− fX(u)

v − u
ds

≥
√

2R̂+
X([u, v])(v − u)(x+(v)− x−(u))−

√
2δM,T (j, n)

n

(
fX( j+1

n )− fX( jn)
)

−
2(M + δM,T (j, n) + 1)

n3/2
.

Substituting this bound into (3.69) and using that R̂−X(Ij) ≤ R̂−X([u, v]) and v−u ≤ 1/n,

we obtain∫ v

u

(√
2R∗X(f(s))−

√
f ′X(s)

)2
ds

≤ 2R̂−X([u, v])(v − u) + x−(v)− x+(u)− 2

√
2R̂+

X([u, v])(v − u)(x+(v)− x−(u))

+
6δM,T (j, n)

n
+

2

n2
+ 2

√
2δM,T (j, n)

n

(
fX( j+1

n )− fX( jn)
)

+
8M

n3/2
.

It then remains to note that, following exactly the same argument as (3.66),

E+
X

(
[u, v],ΛM,T (f, n), T

)
≥ 2R̂−X([u, v])(v−u)+x−(v)−x+(u)−2

√
2R̂+

X([u, v])(v − u)(x+(v)− x−(u))−4/n2.

Combining error terms gives the result.

It is now a relatively simple task to apply Lemma 3.44 to complete the proof of

Lemma 3.22.

Proof of Lemma 3.22. By symmetry it suffices to show that

dbne−1∑
j=banc

E+
X(Ij∩[a, b],ΛM,T (f, n), T ) ≥

∫ b

a

(√
2R∗X(f(s))−

√
f ′X(s)

)2
ds−O

(M4

n1/4
+
M3n

T 1/2

)
.

By Lemma 3.44,

dbne−1∑
j=banc

E+
X(Ij ∩ [a, b],ΛM,T (f, n), T )

≥
dbne−1∑
j=banc

∫
Ij∩[a,b]

(√
2R∗X(f(s))−

√
f ′X(s)

)2
ds

−
dbne−1∑
j=banc

(
6δM,T (j, n)

n
+ 2

√
2δM,T (j, n)

n

(
fX( j+1

n )− fX( jn)
)

+
14M

n3/2

)
.

Note that

dbne−1∑
j=banc

∫
Ij∩[a,b]

(√
2R∗X(f(s))−

√
f ′X(s)

)2
ds =

∫ b

a

(√
2R∗X(f(s))−

√
f ′X(s)

)2
ds,
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and by (3.61)
dbne−1∑
j=banc

(6δM,T (j, n)

n
+

14M

n3/2

)
= O

(M4

n1/2
+
M3n

T

)
.

Finally, by Cauchy-Schwarz,

dbne−1∑
j=banc

√
2δM,T (j, n)

n

(
fX( j+1

n )− fX( jn)
)

≤
( dbne−1∑
j=banc

2δM,T (j, n)

n

)1/2( dbne−1∑
j=banc

(
fX( j+1

n )− fX( jn)
))1/2

,

and using (3.61) and the fact that f ∈ G2
M , we see that

dbne−1∑
j=banc

√
2δM,T (j, n)

n

(
fX( j+1

n )− fX( jn)
)

= O
(M5/2

n1/4
+
M2n1/2

T 1/2

)
.

Combining these estimates completes the proof.

3.B. Proofs of compactness and semicontinuity

3.B.1 Compactness of G2
M,T : proof of Lemma 3.36

The proof of Lemma 3.36, which says that for any F ⊂ E2 we can cover F ∩ G2
M,T

in a nice way with small balls around piecewise linear functions, is straightforward.

We directly construct piecewise linear approximations to an arbitrary function within

F ∩G2
M,T .

Proof of Lemma 3.36. Suppose that T ≥ (4Mn)3/2 and take h ∈ F ∩ G2
M,T . Then

define a function g ∈ PL2
n by interpolating linearly between the values

g(j/n) = bn2h(j/n)c/n2, j = 0, 1, . . . , n.

Then clearly

∆n(g, h) < 1/n2.

We claim that d(g, h) ≤ 1/n. To see this, take s ∈ [0, 1], and then fix j ∈ {0, 1, . . . , n−1}
such that s ∈ [j/n, (j + 1)/n]. Then

g(s) ≤ g( j+1
n ) ≤ h( j+1

n )

and

g(s) ≥ g( jn) ≥ h( jn)− 1/n2

which, by the definition of d, establishes the claim.

Next we claim that g ∈ G2
4M . Since h ∈ G2

M,T we know that for any j = 1, 2, . . . , n,

j

Mn
− 2T−2/3 ≤ h(j/n) ≤M

( j
n

+ 2T−2/3
)
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and since T ≥ (4Mn)3/2 we obtain

j

2Mn
≤ j − 1/2

Mn
≤ h(j/n) ≤ Mj + 1/2

n
≤ 2Mj

n
.

But h(j/n)− 1/n2 ≤ g(j/n) ≤ h(j/n) so

j

2Mn
− 1

n2
≤ g(j/n) ≤ 2Mj

n

and since n ≥ 4M , j/(2Mn) − 1/n2 ≥ j/(4Mn), which, given that g interpolates

linearly between these values, proves the claim.

Since the functions g created in this way can take only finitely many values (namely

integer multiples of 1/n2 with a maximum of at most 2M) at the times 0, 1/n, 2/n, . . . , 1,

and interpolate linearly between these values, there are only finitely many possible such

functions, and therefore the proof is complete.

3.B.2 Partial lower semi-continuity of K̃: proof of Proposition 3.33

To complete the proof of the lower bound in Section 3.3, we need to prove a partial semi-

continuity result about K̃, which was stated in Proposition 3.33. We begin with a useful

lemma which states that given continuity, convergence under d implies convergence

pointwise.

Lemma 3.45. If f ∈ E is continuous at s and d(fn, f) → 0, then fn(s) → f(s).

Moreover, if d(fn, f)→ 0, then fn(1)→ f(1) (regardless of whether f is continuous at

1).

Proof. Fix ε > 0 and s ∈ [0, 1] such that f is continuous at s. Then we can find δ > 0

such that |f(u) − f(s)| < ε/2 for any u ∈ [s − δ, s + δ] ∩ [0, 1]. Choose N such that

d(fn, f) < (ε/2) ∧ δ for all n ≥ N . By the definition of d, this means that

f((s− δ) ∨ 0)− ε/2 ≤ fn(s) ≤ f((s+ δ) ∧ 1) + ε/2.

Then we have

f(s)− ε ≤ f((s− δ) ∨ 0)− ε/2 ≤ fn(s) ≤ f((s+ δ) ∧ 1) + ε/2 ≤ f(s) + ε

and since ε > 0 was arbitrary, we have shown that fn(s)→ f(s).

For the second part of the lemma, simply note that by the definition of d, if

d(fn, f) < ε then |fn(1)− f(1)| < ε.

We now show that when fn is the piecewise linear interpolation to f , the cross-terms

that appear when multiplying out the quadratic terms in K̃ satisfy a semicontinuity

property.

Lemma 3.46. Suppose that 0 ≤ a < b ≤ 1 and that f ∈ G2
M for some M . Let fn be

the function in PLn constructed by setting fn(j/n) = f(j/n) for each j = 0, . . . , n and
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interpolating linearly. Then

lim inf
n→∞

∫ b

a

√
R∗X(fn(s))f ′n,X(s)ds ≥

∫ b

a

√
R∗X(f(s))f ′X(s)ds

where we write fn(s) = (fn,X(s), fn,Y (s)).

Proof. We carry out the proof when a = 0 and b = 1; the general case follows by

including 1{s∈[a,b]} throughout.

Note that∫ 1

0

√
R∗X(fn(s))f ′n,X(s)ds

=

∫ 1

0

n∑
i=1

1{s∈[ i−1
n
, i
n

)}

√
R∗X(fn(s))

√
n(fn,X( in)− fn,X( i−1

n ))ds

=

∫ 1

0

n∑
i=1

1{s∈[ i−1
n
, i
n

)}

√
R∗X(fn(s))

√
n(fX( in)− fX( i−1

n ))ds

≥
∫ 1

0

n∑
i=1

1{s∈[ i−1
n
, i
n

)} inf
u∈[ i−1

n
, i
n

]

√
R∗X(fn(u))

√
n(fX( in)− fX( i−1

n )) ds.

Since f is continuous almost everywhere, by Lemma 3.45, fn(u)→ f(u) almost every-

where. Since f is M -good, and R∗X is continuous away from 0, R∗X(fn(u))→ R∗X(f(u))

for almost every u ∈ [0, 1]. Since f is differentiable almost everywhere, we deduce that

the integrand above converges to
√
R∗X(f(s))f ′X(s) for almost every s ∈ [0, 1]. It is also

bounded above by

Fn(s) =

n∑
i=1

1{s∈[ i−1
n
, i
n

)}M

(
n
(
fX

( i
n

)
− fX

( i− 1

n

))
+ 1

)

which is integrable and whose integral equals M(fX(1) + 1) for each n, which is also

the integral of limn→∞ Fn(s). Therefore, by the generalised dominated convergence

theorem, the integral converges to∫ 1

0

√
R∗X(f(s))f ′X(s) ds

and the proof is complete.

It is then a simple task to prove Proposition 3.33, which shows that K̃(f, 0, t) can

be bounded above by taking piecewise linear approximations to f .

Proof of Proposition 3.33. By (3.3), for any f ∈ E2,

K̃(f, 0, t) = −
∫ t

0
R∗(f(s))ds+ 2

√
2

∫ t

0

√
R∗X(f(s))f ′X(s)ds− fX(t)

+ 2
√

2

∫ t

0

√
R∗Y (f(s))f ′Y (s)ds− fY (t).
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It therefore suffices, by symmetry, to show that

lim sup
n→∞

∫ t

0
R∗(fn(s))ds ≤

∫ t

0
R∗(f(s))ds,

lim inf
n→∞

∫ t

0

√
R∗X(fn(s))f ′n,X(s)ds ≥

∫ t

0

√
R∗X(f(s))f ′X(s)ds

and

lim sup
n→∞

fn,X(t) ≤ fX(t).

The first of these statements follows from Lemma 3.45 and the continuity and bound-

edness of R∗ away from 0, using the fact that f , and therefore fn, is good. The second

follows from Lemma 3.46. For the third, we observe that since f is increasing and

right-continuous,

fn,X(t) ≤ fX
( dnte

n

)
→ fX(t),

which completes the proof.

3.B.3 Upper semi-continuity of K̃: proofs of Proposition 3.37 and

Corollary 3.38

The following consequence of the Cauchy-Schwarz inequality is the key to proving

Proposition 3.37.

Lemma 3.47. Suppose that 0 ≤ a < b ≤ 1 and f, fn ∈ G2
M for all n. If f is

differentiable on [a, b], and d(fn, f)→ 0, then

lim sup
n→∞

∫ b

a

√
R∗X(fn(s))f ′n,X(s)ds ≤

∫ b

a

√
R∗X(f(s))f ′X(s)ds

where we write fn,X for the x-component of fn.

Proof. We carry out the proof when a = 0 and b = 1; the general case follows by

including 1{s∈[a,b]} throughout. By the Cauchy-Schwarz inequality, for any m ∈ N,

∫ 1

0

√
R∗X(fn(s))f ′n,X(s)ds =

m∑
i=1

∫ i/m

(i−1)/m

√
R∗X(fn(s))f ′n,X(s)ds

≤
m∑
i=1

(∫ i/m

(i−1)/m
R∗X(fn(s))ds

)1/2(∫ i/m

(i−1)/m
f ′n,X(s)ds

)1/2

≤
m∑
i=1

(∫ i/m

(i−1)/m
R∗X(fn(s))ds

)1/2(
fn,X

(
i
m

)
− fn,X

(
i−1
m

))1/2
where the last inequality is not an equality since we do not know whether fn,X is

absolutely continuous. Since f is continuous, by Lemma 3.45 we know that fn(s) →
f(s) for every s. Thus, using that f, fn ∈ G2

M and R∗X is continuous away from 0, by

bounded convergence the right-hand side above converges to

m∑
i=1

(∫ i/m

(i−1)/m
R∗X(f(s))ds

)1/2(
fX

( i
m

)
− fX

( i− 1

m

))1/2
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which is at most

m∑
i=1

1

m

(
sup

u∈[ i−1
m
, i
m

]

R∗X(f(u))

)1/2(
m
(
fX

( i
m

)
− fX

( i− 1

m

)))1/2

. (3.71)

We claim that (3.71) converges, as m → ∞, to
∫ 1

0

√
R∗X(f(s))f ′X(s)ds. To prove this

we can follow almost exactly the same argument as in the proof of Lemma 3.46, writing

(3.71) in the form

∫ 1

0

m∑
i=1

1{s∈[ i−1
m
, i
m

)}

(
sup

u∈[ i−1
m
, i
m

]

R∗X(f(u))

)1/2(
m
(
fX

( i
m

)
− fX

( i− 1

m

)))1/2

ds

and applying the generalised dominated convergence theorem since the integrand eval-

uated at s converges as m → ∞ to
√
R∗X(f(s))f ′X(s) for almost every s ∈ [0, 1], and

can be bounded above by

Fm(s) =
m∑
i=1

1{s∈[ i−1
m
, i
m

)}M

(
m
(
fX

( i
m

)
− fX

( i− 1

m

))
+ 1

)
.

This completes the proof.

The next step is to extend the previous lemma to functions that are not necessarily

continuous.

Lemma 3.48. Suppose that 0 ≤ a < b ≤ 1 and f, fn ∈ G2
M for all n. If d(fn, f)→ 0,

then

lim sup
n→∞

∫ b

a

√
R∗X(fn(s))f ′n,X(s)ds ≤

∫ b

a

√
R∗X(f(s))f ′X(s)ds

where we write fn,X for the x-component of fn.

Proof. Fix ε ∈ (0, 6M). Let S ⊂ (0, 1) be the set of points (in (0, 1)) at which f is not

differentiable. Since f is increasing, S has zero Lebesgue measure, and can therefore be

covered by a finite collection (s−1 , s
+
1 ), . . . , (s−N , s

+
N ) of open intervals whose total length

is at most ε2/M3. Let S′ =
⋃N
i=1(s−i , s

+
i ). Then by Lemma 3.47, since [a, b] \ S′ is a

finite union of closed intervals on which f is absolutely continuous, we have

lim sup
n→∞

∫
[a,b]\S′

√
R∗X(fn(s))f ′n,X(s)ds ≤

∫
[a,b]\S′

√
R∗X(f(s))f ′X(s)ds

≤
∫ b

a

√
R∗X(f(s))f ′X(s)ds.

It therefore suffices to show that

lim sup
n→∞

∫
[a,b]∩S′

√
R∗X(fn(s))f ′n,X(s)ds ≤ ε. (3.72)

However, since fn ∈ G2
M , we have∫

[a,b]∩S′

√
R∗X(fn(s))f ′n,X(s)ds ≤

∫
[a,b]∩S′

M
√
f ′n,X(s)ds,
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and by Jensen’s inequality, this is at most

M
√∣∣[a, b] ∩ S′∣∣( ∫

[a,b]∩S′
f ′n,X(s)ds

)1/2

≤M
√
|S′|(fn,X(b)− fn,X(a))1/2

where |S′| denotes the Lebesgue measure of S′. Since fn ∈ G2
M , this is at most

M3/2
√
|S′|, which is smaller than ε by construction. Thus (3.72) holds and the proof

is complete.

The proof of Proposition 3.37 is now a simple consequence of the results above.

Proof of Proposition 3.37. We use the alternative form of K̃ mentioned in (3.3), i.e.

K̃(f, 0, θ) = −
∫ θ

0
R∗(f(s))ds+ 2

√
2

∫ θ

0

√
R∗X(f(s))f ′X(s)ds

+ 2
√

2

∫ θ

0

√
R∗Y (f(s))f ′Y (s)ds− fX(θ)− fY (θ). (3.73)

Since either f is continuous at θ, or θ = 1, by Lemma 3.45 we have

fn,X(θ) + fn,Y (θ)→ fX(θ) + fY (θ).

Since f is continuous almost everywhere, by Lemma 3.45 and the continuity of R∗ away

from 0 (using the fact that fn, f ∈ G2
M ), we have∫ θ

0
R∗(fn(s))ds→

∫ θ

0
R∗(f(s))ds.

The result then follows from Lemma 3.48 and the symmetry between the X and Y

components.

Corollary 3.38 follows easily from Proposition 3.37.

Proof of Corollary 3.38. For each n ∈ N, take fn ∈ Bd(F, 1/n) ∩G2
M such that

K̃(fn, 0, 1) ≥ sup
f∈Bd(F,1/n)∩G2

M

K̃(f, 0, 1)− 1/n.

By Lemma 3.36 we know that G2
M,T is totally bounded, and since G2

M ⊂ G2
M,T and is

closed, and (E2, d) is complete, we deduce that G2
M is compact under d. Therefore there

exists a subsequence (fnj )j≥1 such that d(fnj , f∞)→ 0 as j →∞ for some f∞ ∈ G2
M .

Since d(fnj , f∞)→ 0, and F is closed, we also have f∞ ∈ F . By Proposition 3.37

lim sup
j→∞

K̃(fnj , 0, 1) ≤ K̃(f∞, 0, 1).
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Then by our choice of fn,

lim sup
j→∞

sup
f∈Bd(F,1/nj)∩G2

M

K̃(f, 0, 1)

≤ lim sup
j→∞

(K̃(fnj , 0, 1) + 1/nj) ≤ K̃(f∞, 0, 1) ≤ sup
f∈F∩G2

M

K̃(f, 0, 1)

which completes the proof.
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Chapter 4

A small deviations result for the unscaled paths

of random walks

4.1. Introduction

In many applications it is of interest to estimate the probability that the path of a

process is close to a given function. In this chapter, we consider this problem for a

compound Poisson process (X(s), s ≥ 0) starting from the origin, which jumps at rate

r and has jump distribution ξ satisfying E[eη|ξ|] <∞ for some η > 0.

Let L > 0, p, q ∈ [−1, 1] with p < q be constants. We define LT := LT 1/3, but our

proof in principle could be extended to LT = LT γ with γ < 1/2. We determine the

behaviour of

P0

(
|X(s)− FT (s)|< LT ∀s ∈ [0, T ], X(T )− FT (T ) ∈ (pLT , qLT )

)
when T is large, for a specific class of functions. We assume that FT : [0,∞)→ R is of

the form FT (s) = zs + GT (s), where z ∈ R is a constant independent of T , GT (s) =

G(s) − xT is a twice differentiable function such that G(0) = 0 and xT ∈ (−LT , LT )

satisfies xT /T
1/3 → x, with x ∈ (−L,L).

We stress that G is a function independent of T and satisfies some extra properties,

which we postpone for now, but essentially require that |G′| decreases fast enough at

large times. Our result can also be extended to the case in which L, p and q depend

on T , but converge to constants as T tends to infinity.

The greatest challenge in this work is that we consider tubes centred about functions

with a nonlinear component. Using a standard change of measure, we can deduce the

result from Mogul’skiii [38] in the case F (s) = zs. As we have mentioned in Chapter 1,

in the proof of Theorem 1.3 the problem is reduced to estimating the probability that

a process with mean zero stays in a strip of constant width around the zero function,

and this is not strongly affected by the position at which the process starts and ends at

the beginning and at the end of the interval. However, this is no longer the case when

F (s) is nonlinear.

Our proof is based on a Brownian motion approximation on smaller intervals cov-

ering [0, T ]. This way, we translate our problem into the estimate of probabilities that

a Brownian motion lies in a tube about a given function, which is a much simpler task.

By putting together the approximations on the smaller intervals we find our result on

the probability that X(s) stays near FT (s) on [0, T ]. We now introduce our definitions

more formally.

Let T0 = T 1/3−ε, with ε ∈ (0, 1/3).

We split [T0, T ] into NT := bT 1/3−νc intervals for ν ∈ (0, 1/3), so that each interval

has length ∆T = (T − T0)/NT satisfying limT→∞∆T /T
2/3+ν = 1.

These choices for T0 and NT are motivated by the fact that we are considering

the probability that a process stays in a tube of width LT , and the Brownian motion

approximation of a compound Poisson process is accurate when the length of the time

interval, divided by the square of the tube width, tends to infinity. In our case, this

means that we need ∆T /L
2
T → ∞. This condition is satisfied for any NT smaller
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than bT 1/3−νc, even NT = 1, and in fact for some choices of G(s) our theorem could

be proved without splitting [T0, T ] into smaller intervals. However, some technical

conditions on G(s) are needed to make the Brownian approximation precise, which are

only required locally on each interval, so that having a large number of them ultimately

allows to consider a wider class of functions. More details about this will appear later,

in Section 4.7.

On a different note, we will need a different argument to estimate the probability

that X(s) − zs stays near GT (s) at small times, up to time T0. Using the fact that

G(s) does not grow wildly, we will bound from below this probability using the fact

that T0 is much smaller compared to the tube width, which is guaranteed by our choice

of T0 = T 1/3−ε.

We can now state the properties required on G(s), which we need in different

parts of our proof. These assumptions ensure small errors in the approximation of the

probability thatX(s)−zs stays nearGT (s) with the probability that a Brownian motion

stays near GT (s) on each interval of length ∆T , and also guarantee that combining these

errors on the smaller intervals gives an error which is small enough.

We assume that it is possible to find a sequence δT ∈ (0, 1) with limT→∞ δT = 0,

such that

(i) lim
T→∞

δ2
TNT =∞, lim

T→∞

log(T )

LT δT
= 0 and

∣∣∣xT
LT
− x

L

∣∣∣ < √δT
8

;

(ii) lim
T→∞

1

δT
sup

s∈[T0,T ]
|G′(s)|= 0;

(iii) lim
T→∞

√
δT

NT∑
i=1

|G′(Ti)|= 0;

(iv) lim
T→∞

sup
1≤i≤NT

1

LT δT

∫ Ti

Ti−1

G′(s)2ds = 0;

(v) lim
T→∞

∫ T

T0

|G′′(s)|ds = 0.

We state the following property separately for future reference, since some of our

results, in particular Proposition 4.12, will require this assumption:

(vi) there exists a constant M > 0, independent of T , such that |G′(s)|≤M ∀s ≥ 0.

Note that this is a consequence of (ii). Indeed, (ii) implies that there exists a constant

M ′ > 0 independent of T such that

sup
s∈[T0,T ]

|G′(s)|≤M ′δT .

This in particular gives that |G′(T )|≤ M ′δT and so limT→∞|G′(T )|= 0, from which

(vi) follows using that G is continuously differentiable and independent of T .

The requirements on G(s) implied by the assumptions (i)-(v) seem to be implicit.

To clarify this, we mention that one of the possible applications of our result is related to

the problem of the consistent maximal displacement, that is, to determine how closely

the particles in a branching system can travel to the path of the rightmost particle.

This problem has been considered for example in [27] for branching random walks and

in [40] for Branching Brownian motion. Existing results can be refined by showing that

there are particles above curves that are very close below the rightmost particle path,
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for example above curves of the form zs− bsα.

With this in mind, we show that when G(s) = (s+ 1)α with α ∈ (0, 7/10], it is possible

to choose δT in such a way that the assumptions (i)-(v) are satisfied. We postpone this

discussion to Section 4.7 at the end of the chapter and we now proceed towards the

statement of our main theorem.

Define φ(λ) = E[eλξ] and let

Λ(z) := sup
λ:φ(λ)<∞

{λz − logE[eλX(1)]} = sup
λ:φ(λ)<∞

{λz − rφ(λ) + r}

be the usual large deviations rate function. Denote by λ(z) the value of λ for which

the supremum is achieved, so that

Λ(z) = λ(z)z − rφ(λ(z)) + r

and λ(z) satisfies φ′(λ(z)) = z/r.

Let D be the space of càdlàg functions H : [0,∞)→ R. For F ∈ C2([0,∞),R), let

B(F,L, a, b)|[u,t]= {H ∈ D : |H(s)− F (s)|< L ∀s ∈ [u, t], H(t)− F (t) ∈ (aL, bL)}.

Theorem 4.1. Let FT (s) = zs + G(s)− xT where G(s) and xT satisfy the properties

(i)-(v). If z > rE[ξ] then

lim
T→∞

1

T 1/3

(
logP0(X ∈ B(FT , LT , p, q)|[0,T ]) + Λ(z)T

+ λ(z)G(T )− 1

2

∫ T

0

G′(s)2

rφ′′(λ(z))
ds

)
= λ(z)(x− pL)− π2rφ′′(λ(z))

8L2
.

If z < rE[ξ] the same result holds but replacing pL with qL on the right-hand side. If

z = rE[ξ] the same holds with λ(z) = 0, Λ(z) = 0 and φ′′(λ(z)) = E[ξ2].

An identical statement to Theorem 4.1 holds for a discrete time random walk.

Let Λd(z) = λd(z)z − log φ(λd(z)) where λd satisfies φ′(λd(z)) = z. For u, t ∈ N let

Bd(F,L, a, b)|[u,t]= {H ∈ D : |H(k)−F (k)|< L ∀k ∈ [u, t]∩N, H(t)−F (t) ∈ (aL, bL)}.

Theorem 4.2. Let Sn = ξ1 + . . . , ξn, n ∈ N with ξk ∼ ξ. Let Fn(s) = zs+G(s)− xn,

where G(s) and xn satisfy the properties (i)-(v). If z > E[ξ] then

lim
n→∞

1

n1/3

(
logP0(S ∈ Bd(Fn, Ln, p, q)|[0,n]) + Λd(z)n

+ λd(z)G(n)− 1

2

∫ n

0

G′(s)2

rφ′′(λd(z))
ds

)
= λd(z)(x− pL)− π2rφ′′(λd(z))

8L2
.

If z < E[ξ] the same result holds but replacing pL with qL on the right-hand side. If

z = E[ξ] the same holds with λd(z) = 0, Λd(z) = 0 and φ′′(λd(z)) = E[ξ2].

We only prove Theorem 4.1, but the proof of Theorem 4.2 is identical and in fact

simpler because the discretisation argument to transform Y (s) into a process in discrete

time from Lemma 4.12 is not necessary.

The remaining of the chapter is structured as follows. In Section 4.2.1 we deal with
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the linear term zs with a standard change of measure, thereby reducing our problem

to estimating the probability that a process Y (s) with mean 0 stays near G(s)− xT .

In Section 4.2.2 we prove some elementary estimates about the probability that a

Brownian motion stays in a tube about a given function.

In Section 4.3.1 we show how to split the probability that Y (s) stays near G(s)−xT
in [0, T ] into probabilities on smaller time intervals.

In Section 4.3.2 we approximate each one of these with the probability that a

Brownian motion stays near G(s) − xT , using the Komlós-Major-Tusnády Theorem.

Proposition 4.13 in Section 4.3.3, in which we split the probability that Y (s) stays near

G(s)− xT on [0, T ] into probabilities that a Brownian motion stays near G(s)− xT on

smaller intervals, will be at the core of the proof of Theorem 4.1.

In Section 4.4 we give some technical results on how to combine together terms

coming from different intervals. Finally, in Sections 4.5 and 4.6 we prove the upper

and lower bound of Theorem 4.1, respectively.

4.2. Elementary bounds on compound Poisson processes
and Brownian motion

4.2.1 Changing the measure to deal with the linear component of F

The probability that a compound Poisson process stays near a linear function zs can

be easily addressed with a Girsanov-type change of measure, so that under the new

probability measure the process has drift zs.

For s ≤ T , let Fs be the filtration generated by the process (X(u) : u ≤ s). Define

a new measure by

dQλ(z)

dP

∣∣∣∣
Fs

:= eλ(z)X(s)−rs(φ(λ(z))−1), s ∈ [0, T ]. (4.1)

Lemma 4.3. Under Qλ(z), (X(s), s ≥ 0) has mean zs and variance φ′′(λ(z))rs. In

particular, if we let

Y (s) =
X(s)− zs√
rφ′′(λ(z))

, s ≥ 0, (4.2)

then EQλ(z)
[
Y (j + 1)− Y (j)

]
= 0 and EQλ(z)

[
(Y (j + 1)− Y (j))2

]
= 1 for every j ∈ N.

Proof. Let Sn = ξ1 + · · · + ξn, n ∈ N be the sum of n independent copies of ξ. Con-

ditioning to the number of jumps of X(s) up to time s and using the independence of

the increments, we get

EQλ(z)
[
X(s)

]
= EP

[
eλ(z)X(s)−rsφ(λ(z))+rsX(s)

]
=
∞∑
n=0

EP
[
eλ(z)SnSn

]
e−rsφ(λ(z))+rse−rs

(rs)n

n!

=

∞∑
n=0

nEP
[
eλ(z)ξξ

]
EP
[
eλ(z)ξ

]n−1
e−rsφ(λ(z)) (rs)n

n!
.
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Noting that EP
[
eλ(z)ξξ

]
= φ′(λ(z)), the above gives that

EQλ(z)
[
X(s)

]
=

∞∑
n=0

nφ′(λ(z))φ(λ(z))n−1e−rsφ(λ(z)) (rs)n

n!

= φ′(λ(z))e−rsφ(λ(z))rs
∞∑
n=1

φ(λ(z))n−1 (rs)n−1

(n− 1)!

= rsφ′(λ(z)),

and since λ(z) satisfies φ′(λ(z)) = z/r, we have that EQλ(z) [X(s)] = zs. Similarly,

EQλ(z)
[
X(s)2

]
= EP

[
eλ(z)X(s)−rsφ(λ(z))+rsX(s)2

]
=
∞∑
n=0

EP
[
eλ(z)SnS2

n

]
e−rsφ(λ(z)) (rs)n

n!
.

Using that

EP
[
eλ(z)SnS2

n

]
=

n∑
i=1

EP
[
eλ(z)Snξ2

i

]
+ 2

∑
i<j

EP
[
eλ(z)Snξiξj

]
= nEP

[
eλ(z)ξξ2

]
EP
[
eλ(z)ξ

]n−1
+ n(n− 1)EP

[
eλ(z)ξξ

]2EP
[
eλ(z)ξ

]n−2

= nφ′′(λ(z))φ(λ(z))n−1 + n(n− 1)φ′(λ(z))2φ(λ(z))n−2.

Substituting this, we obtain

EQλ(z)
[
X(s)2

]
=
∞∑
n=1

φ′′(λ(z))φ(λ(z))n−1e−rsφ(λ(z)) (rs)n

(n− 1)!

+

∞∑
n=2

φ′(λ(z))2φ(λ(z))n−2e−rsφ(λ(z)) (rs)n

(n− 2)!

= φ′′(λ(z))rs+ φ′(λ(z))2(rs)2,

so EQλ(z)
[
X(s)2

]
− EQλ(z) [X(s)]2 = φ′′(λ(z))rs. From the definition of Y (s) in (4.2), it

is clear that EQλ(z) [Y (j)] = 0 for every j ∈ N. Since

EQλ(z)
[
Y (j + 1)Y (j)

]
= EQλ(z)

[
(Y (j + 1)− Y (j) + Y (j))Y (j)

]
= EQλ(z)

[
Y (j + 1)− Y (j)

]
EQλ(z)

[
Y (j)

]
+ EQλ(z)

[
Y (j)2

]
= EQλ(z)

[
Y (j)2

]
and

EQλ(z)
[
Y (j)2

]
=

EQλ(z)
[
(X(j)− zj)2

]
rφ′′(λ(z))

=
EQλ(z)

[
(X(j)− EQλ(z) [X(j)])2

]
rφ′′(λ(z))

= j,

we can conclude that

EQλ(z)
[
(Y (j + 1)− Y (j))2

]
= EQλ(z)

[
Y (j + 1)2

]
+EQλ(z)

[
Y (j)2

]
− 2EQλ(z)

[
Y (j + 1)Y (j)

]
= (j + 1) + j − 2j= 1.
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This completes the proof.

Since EP[X(s)] = rsEP[ξ], when z = rEP[ξ] the process (X(s)− zs, s ≥ 0) already

has mean 0 under P. In this case, it is easy to see that λ(z) = 0, φ(λ(z)) = 1, φ′(λ(z)) =

EP[ξ] and φ′′(λ(z)) = EP[ξ2]. Therefore, from (4.1), we deduce that Qλ(z) = P. In this

case, Lemma 4.3 still holds, although there is actually no change of measure involved.

The next lemma uses the change of measure introduced in Lemma 4.3 to transform

the probability that X(s) stays in a tube about FT (s) = zs+GT (s) into the probability

that Y (s) stays in a tube about a rescaled version of GT (s), under the new probability

measure Qλ(z).

Lemma 4.4. Recall that FT (s) = zs + GT (s), where GT (s) = G(s) − xT . Define

G̃T (s) = GT (s)
(
rφ′′(λ(z))

)−1/2
and L̃T = LT

(
rφ′′(λ(z))

)−1/2
.

If z > rE[ξ], for any ε > 0 small enough

exp
(
− Λ(z)T − λ(z)(G(T )− xT + (p+ ε)LT )

)
Qλ(z)

0

(
Y ∈ B(G̃T , L̃T , p, p+ ε)|[0,T ]

)
≤ P0

(
X ∈ B(FT , LT , p, q)|[0,T ]

)
≤ exp

(
− Λ(z)T − λ(z)(G(T )− xT + pLT )

)
Qλ(z)

0

(
Y ∈ B(G̃T , L̃T , p, q)|[0,T ]

)
and if z < rE[ξ], for any ε > 0 small enough

exp
(
− Λ(z)T − λ(z)(G(T )− xT + (q + ε)LT )

)
Qλ(z)

0

(
Y ∈ B(G̃T , L̃T , q − ε, q)|[0,T ]

)
≤ P0

(
X ∈ B(FT , LT , p, q)|[0,T ]

)
≤ exp

(
− Λ(z)T − λ(z)(G(T )− xT + qLT )

)
Qλ(z)

0

(
Y ∈ B(G̃T , L̃T , p, q)|[0,T ]

)
.

When z = rE[ξ],

P0

(
X ∈ B(FT , LT , p, q)|[0,T ]

)
= P0

(
Y ∈ B(G̃T , L̃T , p, q)|[0,T ]

)
.

Proof. Let AT =
{
X ∈ B(FT , LT , p, q)|[0,T ]

}
. We note that φ′(0) = EP[ξ] and φ′′(λ) =

E
[
eλξξ2

]
> 0 ∀λ ∈ R. Since λ(z) satisfies φ′(λ(z)) = z/r, then λ(z) > 0 if and only if

z > rE[ξ]. It follows that when z > rE[ξ], since X(T ) ≥ zT +G(T )−xT + pLT on AT ,

then

P0

(
AT
)

= Qλ(z)
0

[
exp

(
− λ(z)X(T ) + rT (φ(λ(z)− 1)

)
1AT

]
≤ exp

(
− λ(z)(zT +G(T )− xT + pLT ) + rTφ(λ(z))− rT

)
Qλ(z)

0 (AT )

= exp
(
− Λ(z)T − λ(z)(G(T )− xT + pLT )

)
Qλ(z)

0 (AT ).

Recalling the definition of Y (s) from Lemma 4.3, we can write

Qλ(z)
0 (AT ) = Qλ(z)

0 (Y ∈ B(G̃T , L̃T , p, q)|[0,T ],

so the upper bound is proved. For any ε > 0 let AεT =
{
X ∈ B(FT , LT , p, p + ε)|[0,T ]

}
.

Then the lower bound can be proved in the same way using that

P0

(
X ∈ B(FT , LT , p, q)|[0,T ]

)
≥ P0(AεT ).
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The case z < rE[ξ] is analogous, and when z = rE[ξ] we already noticed that there is

no change of measure, the drift is already 0 so the only effect is dividing all quantities

by
√
rφ′′(λ(z)) =

√
rE[ξ2].

From now on, we denote by Q0 the probability measure Qλ(z)
0 and all the results

we present involve the process Y (s) under Q0. We will switch back to X(s) when we

prove Theorem 4.1 in Sections 4.5 and 4.6.

4.2.2 Detailed estimates for the probability that a Brownian motion

stays in a tube about a function f

In this section we prove some sharp estimates for Brownian motion, most of which can

be almost directly deduced from [40], although we give here more explicit error bounds.

Our first lemma concerns the probability that a Brownian motion starting from x

stays in a symmetric strip of constant width L up to time t.

Proposition 4.5. Fix x ∈ (−L,L) and −1 ≤ p < q ≤ 1. There exists a constant C > 0

such that if t ≥ 8L2

(
e−

π2t
8L2 cos

(πx
2L

)∫ q

p
cos
(πν

2

)
dν

)
(1− Ce−

π2t
L2 )

≤ Px(B(s) ∈ (−L,L) ∀s ∈ [0, t], B(t) ∈ (pL, qL))

≤
(
e−

π2t
8L2 cos

(πx
2L

)∫ q

p
cos
(πν

2

)
dν

)
(1 + Ce−

π2t
L2 ).

Proof. From standard results (see for example Problem 1.7.8 in [34]) we have that

Px(B(s) ∈ (−L,L) ∀s ∈ [0, t], B(t) ∈ (pL, qL))

=
∞∑
n=1

e−n
2 π2t
8L2 sin

(πn
2

)2
cos
(πnx

2L

)∫ q

p
cos
(πnν

2

)
dν.

Since all the even terms are zero, this can be rewritten as

Px(B(s) ∈ (−L,L) ∀s ∈ [0, t], B(t) ∈ (pL, qL))

=

∞∑
k=0

e−(2k+1)2 π
2t

8L2 cos

(
π(2k + 1)x

2L

)∫ q

p
cos

(
π(2k + 1)ν

2

)
dν

= e−
π2t
8L2 cos

(πx
2L

)∫ q

p
cos
(πν

2

)
dν

+
∞∑
k=1

e−(2k+1)2 π
2t

8L2 cos

(
π(2k + 1)x

2L

)∫ q

p
cos

(
π(2k + 1)ν

2

)
dν.

The lemma is proved if we show that there exists a constant C > 0 such that∣∣∣∣∣
∞∑
k=1

e−(2k+1)2 π
2t

8L2 cos

(
π(2k + 1)x

2L

)∫ q

p
cos

(
π(2k + 1)ν

2

)
dν

∣∣∣∣∣
≤ Ce−

9π2t
8L2 cos

(πx
2L

)∫ q

p
cos
(πν

2

)
dν. (4.3)
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Using that for every k ≥ 1 and α ∈ (−1, 1)∣∣∣∣cos

(
π(2k + 1)α

2

)∣∣∣∣ ≤ (2k + 1) cos
(πα

2

)
we obtain∣∣∣∣∣

∞∑
k=1

e−(2k+1)2 π
2t

8L2 cos

(
π(2k + 1)x

2L

)∫ q

p
cos

(
π(2k + 1)ν

2

)
dν

∣∣∣∣∣
≤
∞∑
k=1

e−(2k+1)2 π
2t

8L2

∣∣∣∣cos

(
π(2k + 1)x

2L

)∣∣∣∣ ∫ q

p

∣∣∣∣cos

(
π(2k + 1)ν

2

)∣∣∣∣ dν
≤

( ∞∑
k=1

(2k + 1)2e−(2k+1)2 π
2t

8L2

)
cos
(πx

2L

)∫ q

p
cos
(πν

2

)
dν.

When t ≥ 8L2,

∞∑
k=1

(2k + 1)2e−(2k+1)2 π
2t

8L2 = 9e−
9π2t
8L2 +

∞∑
k=2

(2k + 1)2e−(2k+1)2 π
2t

8L2

= e−
9π2t
8L2

(
9 +

∞∑
k=2

(2k + 1)2e−((2k+1)2−9) π
2t

8L2

)

≤ e−
9π2t
8L2

(
9 +

∞∑
k=2

(2k + 1)2e−4k2π2

)
≤ Ce−

9π2t
8L2 .

This proves (4.3) and completes the proof.

We now extend Proposition 4.5 and consider the probability that a Brownian motion

lies in a tube of constant width centred about a given function f . Again, the proof is

adapted from [40], but we give explicit error bounds.

Proposition 4.6. Let (B(s), s ≥ 0) be a standard Brownian motion. Let x ∈ (−L,L)

and f : [0,∞)→ R be a twice differentiable function such that f(0) = −x. If f ′(t) > 0,

then

e−f
′(t)qL− 1

2

∫ t
0 f
′(s)2ds+f ′(0)x− π2t

8L2−L
∫ t
0 |f
′′(s)|ds

(
1− Ce−

π2t
L2

)
cos
(πx

2L

)∫ q

p
cos
(πν

2

)
dν

≤ P(B(s)− f(s) ∈ (−L,L) ∀s ∈ [0, t], B(t)− f(t) ∈ (pL, qL))

≤ e−f
′(t)pL− 1

2

∫ t
0 f
′(s)2ds+f ′(0)x− π2t

8L2 +L
∫ t
0 |f
′′(s)|ds

(
1 + Ce−

π2t
L2

)
cos
(πx

2L

)∫ q

p
cos
(πν

2

)
dν.

If f ′(t) < 0, the same inequalities hold but swapping f ′(t)qL with f ′(t)pL.

Proof. The proof is a standard application of Girsanov’s theorem, combined with

Proposition 4.5. Define a new measure P̂x by

dP̂x
dP

∣∣∣∣
t

= e
∫ t
0 f
′(s)dB(s)− 1

2

∫ t
0 f
′(s)2ds, s ∈ [0, t].

Under P̂x, the process B̃(s) = B(s) − f(s), s ∈ [0, t] is a Brownian motion starting
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from x. Let

At := {B̃(s) ∈ (−L,L) ∀s ∈ [0, t], B̃(t) ∈ (pL, qL)}.

Then

P̂x(At) = EP

[
e
∫ t
0 f
′(s)dB(s)− 1

2

∫ t
0 f
′(s)2ds

1At

]
.

We write the exponential martingale in the change of measure in terms of B̃. The

stochastic integration by parts formula gives that∫ t

0
f ′(s)dB(s) = f ′(t)B(t)−

∫ t

0
f ′′(s)B(s)ds.

Substituting B(s) = B̃(s)+f(s) for all s ∈ [0, t] and using that (from the deterministic

integration by parts formula)∫ t

0
f ′′(s)f(s)ds = f ′(t)f(t) + f ′(0)x−

∫ t

0
f ′(s)2ds,

we get∫ t

0
f ′(s)dB(s) = f ′(t)B̃(t) + f ′(t)f(t)−

∫ t

0
f ′′(s)B̃(s)ds−

∫ t

0
f ′′(s)f(s)ds

= f ′(t)B̃(t)−
∫ t

0
f ′′(s)B̃(s)ds− f ′(0)x+

∫ t

0
f ′(s)2ds.

This, together with the bounds on B̃ on the event At, gives that

P̂x(At) = EP

[
e
∫ t
0 f
′(s)dB(s)− 1

2

∫ t
0 f
′(s)2ds

1At

]
= EP

[
ef
′(t)B̃(t)−f ′(0)x−

∫ t
0 f
′′(s)B̃(s)ds+ 1

2

∫ t
0 f
′(s)2ds

1At

]
≥ ef ′(t)pL−f ′(0)x−L

∫ t
0 |f
′′(s)|ds+ 1

2

∫ t
0 f
′(s)2dsP(At).

The upper bound on P(At) follows by estimating P̂(At) with Proposition 4.5. The

proof of the lower bound is identical.

In [40], Proposition 4.6 is extended even further, to the case in which the tube has

width L(s), which varies with time. The result with tubes of constant width is enough

for our purposes, so we refer to [40] for further details.

We introduce more notation, which will be more convenient later on in our proofs.

Until the remaining of this section, (B(s), s ≥ 0) is a standard Brownian motion

and H : [0,∞) → R is a twice differentiable function such that H(0) = −w, where

w ∈ (−L,L).

For a, b ∈ [−1, 1] with a < b define

θ+
t (H,L, a, b) =

{
aL if H ′(t) > 0

bL if H ′(t) < 0
θ−t (H,L, a, b) =

{
bL if H ′(t) > 0

aL if H ′(t) < 0.
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Define also

κ+
u,t(H,w,L, a, b)

= −1

2

∫ t

u
H ′(s)2ds+H ′(u)w − π2(t− u)

8L2
− θ+

t (H,L, a, b)H ′(t) + L

∫ t

u
|H ′′(s)|ds,

κ−u,t(H,w,L, a, b)

= −1

2

∫ t

u
H ′(s)2ds+H ′(u)w − π2(t− u)

8L2
− θ−t (H,L, a, b)H ′(t)− L

∫ t

u
|H ′′(s)|ds

and

Γ(y, a, b) = cos
(πy

2

)∫ b

a
cos
(πν

2

)
dν.

We can rewrite Proposition 4.6 as follows.

Proposition 4.7. Let t ≥ 0 and a, b ∈ [−1, 1] with a < b. There exists a constant

C > 0 such that

exp
(
κ−0,t(H,w,L, a, b)

)
Γ(w/L, a, b)

(
1− Ce−π2t/L2)

≤ Q0(|B(s)−H(s)|< L ∀s ∈ [0, t], B(t)−H(t) ∈ (aL, bL))

≤ exp
(
κ+

0,t(H,w,L, a, b)
)
Γ(w/L, a, b)

(
1 + Ce−π

2t/L2)
.

We notice that the previous proposition gives a sharp estimate for the probability

that B(s) stays near a flat function H(s) = −w only when t/L2 →∞. When t/L2 → 0

instead, B(s) stays near its starting position with probability close to 1. We make this

assertion precise in the next lemmas, which we will need later, in Section 4.6, when we

prove the lower bound of Theorem 4.1.

Lemma 4.8. Let x ∈ (−L,L) and ε > 0 such that −L+ εL < x < L− εL. Then

Qx(|B(s)|< L ∀s ∈ [0, t], |B(t)− x|< εL
)
≥ 1− 2√

π

(√2t

εL

)
exp

(
−ε

2L2

2t

)
.

Proof. Using that −L + εL < x < L − εL, by standard properties of the Brownian

motion we have

Qx(|B(s)|< L ∀s ∈ [0, t], |B(t)− x|< εL)

≥ Qx(|B(s)− x|< εL ∀s ∈ [0, t], |B(t)− x|< εL)

= Q0(|B(s)|< εL ∀s ∈ [0, t]) = 1−Q0(∃s ∈ [0, t] : |B(s)|≥ εL).

From the reflection principle,

Q0(∃s ∈ [0, t] : |B(s)|≥ εL) ≤ 2Q0(∃s ∈ [0, t] : B(s) ≥ εL) = 4Q0(B(t) ≥ εL).

Using the tail estimates

1

w
√

2π

(
1− 1

w2

)
exp

(
− w2

2

)
≤ Q(W > w) ≤ 1

w
√

2π
exp

(
− w2

2

)
(4.4)
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where W ∼ N (0, 1) and w > 0, we obtain

4Q0(B(t) ≥ εL) ≤ 2√
π

(√2t

εL

)
exp

(
−ε

2L2

2t

)
.

It is easy to extend the previous lemma to the probability that B(s) is near a

function H(s) with a Girsanov change of measure:

Lemma 4.9. Let x ∈ (−L,L) and ε > 0 such that −L + εL < x < L − εL. For any

H : [0,∞)→ R such that H ′(t) > 0,

Qx

(
B ∈ B

(
H,L, xL − ε,

x
L + ε

)∣∣
[0,t]

)
≥ exp

(
−H ′(t)(x+εL)+H ′(0)x−L

∫ t

0
|H ′′(s)|ds−1

2

∫ t

0
H ′(s)2ds

)(
1− 2

√
2t√

πεL
e−

ε2L2

2t

)
.

Proof. Define a new measure Q̂x by

dQ̂x

dQx

∣∣∣∣
t

= e
∫ t
0 H
′(s)dB(s)− 1

2

∫ t
0 H
′(s)2ds, s ∈ [0, t].

Under Q̂x, the process B̃(s) = B(s) − H(s), s ∈ [0, t] is a Brownian motion starting

from x. Let

At := {B̃(s) ∈ (−L,L) ∀s ∈ [0, t], B̃(t) ∈ (x− εL, x+ εL)}.

Then, with the same steps as in the proof of Proposition 4.7 we can show that

Q̂x(At) ≤ exp
(
H ′(t)(x+ εL)−H ′(0)x+ L

∫ t

0
|H ′′(s)|ds+

1

2

∫ t

0
H ′(s)2ds

)
Qx(At).

Estimating Q̂x(At) with Lemma 4.8 gives the result.

4.3. Proof outline for Theorem 4.1

4.3.1 Splitting [0, T ] into smaller intervals

As we anticipated in Section 4.1, our proof consists of splitting [0, T ] into smaller

intervals, on which we approximate the compound Poisson process with a Brownian

motion. The next lemma shows how we split the time intervals, going backwards and

separating the final part.

For a, b ∈ [−1, 1] and ε < (b− a)/4 define

B+
ε (H,L, a, b)|[0,t]= B

(
H, (1 + ε)L,

a− ε
1 + ε

,
b+ ε

1 + ε

)∣∣∣
[0,t]

(4.5)

and

B−ε (H,L, a, b)|[0,t]= B
(
H, (1− ε)L, a+ ε

1− ε
,
b− ε
1− ε

)∣∣∣
[0,t]

. (4.6)

Lemma 4.10. Denote by Q0 the probability measure Qλ(z)
0 defined in Lemma 4.3. Let

a, b ∈ [−1, 1] and n ∈ N such that 1/n2 ≤ (b − a)/4. Define k+
n = (k + 1/2)/n2 for
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k ∈ {−n2, . . . , n2 − 1}. Let

Gk,ni,T (t) = G(t+ Ti−1)−G(Ti−1)− k+
n LT

for t ∈ [0, Ti − Ti−1] and i ∈ {1, . . . , NT }. Then

Q0

(
Y ∈ B(GT , LT , a, b)|[0,Ti]

)
≤

n2−1∑
k=−n2

Q0

(
Y ∈ B

(
GT , LT ,

k
n2 ,

k+1
n2

)∣∣
[0,Ti−1]

)
Q0

(
Y ∈ B+

1/(2n2)
(Gk,ni,T , LT , a, b)|[0,∆T ]

)
and

Q0

(
Y ∈ B(GT , LT , a, b)|[0,Ti]

)
≥

n2−5∑
k=−n2+4

Q0

(
Y ∈ B

(
GT , LT ,

k
n2 ,

k+1
n2

)∣∣
[0,Ti−1]

)
Q0

(
Y ∈ B−

1/(2n2)
(Gk,ni,T , LT , a, b)|[0,∆T ]

)
.

Proof. We let Ik := (kLT /n
2, (k + 1)LT /n

2) for k ∈ {−n2, . . . , n2 − 1} and write

(−LT , LT ) as the disjoint union
⋃n2−1
k=−n2 Ik. Splitting the last time interval we obtain

Q0(Y ∈ B(GT , LT , a, b)|[0,Ti])

≤
n2−1∑
k=−n2

Q0

(
Y ∈ B

(
GT , LT ,

k
n2 ,

k+1
n2

)∣∣
[0,Ti−1]

)
· sup
x∈Ik

QG(Ti−1)+x

(
Y ∈ B(GT , LT , a, b)|[Ti−1,Ti]

)
.

Using that |x− k+
n LT |≤ LT /(2n2) for every x ∈ Ik and stationarity,

sup
x∈Ik

QG(Ti−1)+x(Y ∈ B(GT , LT , a, b)|[Ti−1,Ti])

≤ QG(Ti−1)+k+nLT
(Y ∈ B+

1/(2n2)
(GT , LT , a, b)|[Ti−1,Ti])

= Q0(Y ∈ B+
1/(2n2)

(Gk,ni,T , LT , a, b)|[0,Ti−Ti−1]).

This concludes the proof of the upper bound. On the other hand, using that

inf
x∈Ik

QG(Ti−1)+x

(
Y ∈ B(GT , LT , a, b)|[Ti−1,Ti]

)
≥ Q0

(
Y ∈ B−

1/(2n2)
(Gk,ni,T , LT , a, b)|[0,Ti−Ti−1]

)
we can prove the lower bound in the same way.

4.3.2 Brownian motion approximation: the KMT Theorem

We now proceed with the approximation of Y (s) with a standard Brownian motion

on each interval of length ∆T . Under suitable rescaling, the Functional Central Limit

Theorem ensures that the processes converge in distribution. However, since the num-

ber of intervals depends on T , we need to quantify the error in this approximation.
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To achieve this, we use the Komlós-Major-Tusnády theorem (KMT), which was first

introduced in [35], but we state here an equivalent version taken from [24]:

Theorem 4.11 (KMT). Let Z1, Z2, . . . be i.i.d. random variables with E(Z1) = 0,

E(Z1)2 = 1 and E(eθ|Z1|) <∞ for some θ > 0. Let S(j) := Z1 + · · ·+ Zj.

Then for any τ ∈ N, it is possible to construct a version of S(j), j ∈ {0, . . . , τ} and

a standard Brownian motion (B(t), t ≤ τ) on the same probability space such that for

every z ≥ 0,

Q0

(
max
j≤τ
|S(j)−B(j)|≥ C log τ + z

)
≤ Ke−µz,

where C,K, µ are positive constants which do not depend on τ .

We want to apply Theorem 4.11 with S(j) = Y (j), where Zk = Y (k) − Y (k − 1)

satisfies EQλ(z)
[
Y (k) − Y (k − 1)

]
= 0 and EQλ(z)

[
(Y (k) − Y (k − 1))2

]
= 1 for k ∈ N,

from Lemma 4.3. The following lemma adapts Theorem 4.11 to the approximation of

Y (s) with a Brownian motion in continuous time.

Lemma 4.12. Assume that H : [0,∞)→ R satisfies |H ′(s)|≤M for every s ≥ 0, where

M > 0 is a constant independent of T . Then there exist two constants µ′,K ′ > 0, also

independent of T , such that

Q0

(
B ∈ B−3δT (H,LT , aT , bT )|[0,∆T ]

)
−K ′e−µ′LT δT

≤ Q0

(
Y ∈ B(H,LT , aT , bT )|[0,∆T ]

)
≤ Q0

(
B ∈ B+

3δT
(H,LT , aT , bT )|[0,∆T ]

)
+K ′e−µ

′LT δT ,

for every T large enough, where aT , bT ∈ [−1, 1] and δT is a sequence satisfying condi-

tions (i)-(iv) and such that 8δT ≤ bT − aT .

Proof. In the first part of the proof we show that we can change the probability that

a Brownian motion stays near a function H(s) on [0, t] into the probability that the

process is close to H(s) at discrete times up to t, with an exponentially small additive

error.

Let τ = b∆T c.
For F,H ∈ D, define d(F,H)|[0,∆T ]= max{|F (j)−H(j)|: j = 0, . . . , τ} and let

Bd(H,L, a, b)|[0,∆T ]= {F ∈ D : d(F,H)|[0,∆T ]< L, aL < F (τ)−H(τ) < bL}

and for ε such that 8ε ≤ b − a define B+
d,ε(H,L, a, b)|[0,∆T ] and B−d,ε(H,L, a, b)|[0,∆T ]

analogously to (4.5) and (4.6). We start by showing that if B(s) is a standard Brownian

motion, then there exist C > 0 and ν > 0 independent of T such that

Q0

(
B ∈ B−d,δT (H,LT , aT , bT )|[0,∆T ]

)
− Ce−νLT δT

≤ Q0

(
B ∈ B(H,LT , aT , bT )|[0,∆T ]

)
≤ Q0

(
B ∈ B+

d,δT
(H,LT , aT , bT )|[0,∆T ]

)
+ Ce−νLT δT . (4.7)
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Writing

Q0

(
B ∈ B−d,δT (H,LT , aT , bT )|[0,∆T ]

)
≤ Q0

(
B ∈ B(H,LT , aT , bT )|[0,∆T ]

)
+ Q0

(
∃j ≤ τ, ∃s ∈ [j, j + 1] : |B(s)−H(s)− (B(j)−H(j))|> LT δT

)
,

we get the lower bound in (4.7) if we show that

Q0

(
∃j ≤ τ, ∃s ∈ [j, j+1] : |B(s)−H(s)− (B(j)−H(j))|> LT δT

)
≤ Ce−νLT δT . (4.8)

From a union bound and using stationarity, we get

Q0

(
∃j ≤ τ, ∃s ∈ [j, j + 1] : |B(s)−H(s)− (B(j)−H(j))|> LT δT

)
≤

τ∑
j=0

Q0

(
∃s ∈ [0, 1] : |B(s)− (H(s+ j)−H(j))|> LT δT

)
≤

τ∑
j=0

Q0

(
sup
s∈[0,1]

|B(s)|> LT δT − sup
s∈[0,1]

|H(s+ j)−H(j)|
)
.

We now have

sup
j≤τ

sup
s∈[0,1]

|H(s+ j)−H(j)|≤ sup
j≤τ

sup
s∈[j,j+1]

|H ′(s)|≤ sup
s∈[0,∆T ]

|H ′(s)|≤M,

which is smaller than LT δT /2 for every T large enough. Using this, together with the

reflection principle and (4.4)

Q0

(
∃j ≤ τ, ∃s ∈ [j, j + 1] : |B(s)−H(s)− (B(j)−H(j))|> LT δT

)
≤ 2τQ0

(
sup
s∈[0,1]

|B(s)|> LT δT
2

)
≤ 8τQ0

(
B(1) >

LT δT
2

)
≤ 8τ√

2π

( 2

LT δT

)
exp

(
−
L2
T δ

2
T

8

)
so since from (i) we have that limT→∞

log(T )
LT δT

= 0, (4.8) is proved.

For the upper bound in (4.7) we only have to check that the condition at the end

of the interval can be moved from t to τ . From

Q0

(
B ∈ B(H,LT , aT , bT )|[0,∆T ]

)
≤ Q0

(
B ∈ B+

d,δT
(H,LT , aT , bT )|[0,∆T ]

)
+ Q0

(
∃s ∈ [τ, t] : |B(s)−H(s)− (B(τ)−H(τ))|> LT δT

)
,

the result is proved by bounding the second term with the probability in (4.8).

We also note that (4.7) holds if we replace B(s) with Y (s). The only change in the

previous calculations for a Brownian motion is when we estimate

2τQ0

(
sup
s∈[0,1]

|Y (s)|> LT δT
2

)
.
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Recall that the increment distribution ξ of X(s) satisfies EP[eη
∗|ξ|] <∞ for some η∗ > 0.

Note that Y (s), s ≥ 0 is a martingale under Qλ(z)
0 and so the exponential of |Y (s)| is

a positive submartingale. By Doob’s maximal inequality, for any η < η∗, we have

Q0

(
sup
s∈[0,1]

|Y (s)|> LT δT
2

)
≤EQ

[
exp

(
η
√
rφ′′(λ(z))|Y (1)|

)]
exp

(
− η

2

√
rφ′′(λ(z))LT δT

)
=EQ

[
exp

(
η|X(1)− z|

)]
exp

(
− LT δT

2
· η
√
rφ′′(λ(z))

)
.

Since |X(1)| is smaller than the sum of N ∼ Pois(r) independent copies of |ξ|, we have

EP
[
eκ|X(1)|] ≤ EP

[
eκ
∑N
k=1|ξk|

]
= exp

(
rEP

[
eκ|ξ|

]
− r
)
,

and so EP
[
eκ|X(1)|] <∞ for every κ such that EP

[
eκ|ξ|

]
<∞. We then have that

EQ
[

exp
(
η|X(1)− z|

)]
= EP

[
exp

(
λ(z)X(1)− rφ(λ(z)) + r

)
exp

(
η|X(1)− z|

)]
≤ EP

[
exp

(
λ(z)X(1) + η|X(1)|

)]
exp

(
− rφ(λ(z)) + r + η|z|

)
,

where the expectation is finite if η is small enough, since by definition of λ(z) we have

that E[eλ(z)X(1)] <∞, and {λ : φ(λ) <∞} is an open set.

Now that we can change the probabilities on the continuous-time interval [0, t], for

both a Brownian motion and a compound Poisson process, into probabilities involving

the discrete times on [0,∆T ], we can bound the error in the approximation of Y (j)

with B(j) for j ≤ τ with Theorem 4.11.

Theorem 4.11 says that we can build a coupling of Y (j) for 1 ≤ j ≤ τ with a

standard Brownian motion B(s), defined under the same probability measure Q̂, such

that

Q̂0

(
∃j ≤ τ : |Y (j)−B(j)|≥ LT δT

)
≤ K exp

(
− µLT δT

2

)
,

where µ and K are constants that do not depend on T . Therefore

Q0

(
Y ∈ B+

d,δT
(H,LT , aT , bT )|[0,∆T ]

)
≤ Q0

(
B ∈ B+

d,2δT
(H,LT , aT , bT )|[0,∆T ]

)
+ Q̂0

(
∃j ≤ τ : |Y (j)−B(j)|≥ LT δT

)
≤ Q0

(
B ∈ B+

d,2δT
(H,LT , aT , bT )|[0,∆T ]

)
+K exp

(
− µLT δT

2

)
.

Combining this with the discrete approximations of B(s) and Y (s) from (4.7) gives

Q0

(
Y ∈ B(H,LT , aT , bT )|[0,∆T ]

)
≤ Q0

(
Y ∈ B+

d,δT
(H,LT , aT , bT )|[0,∆T ]

)
+ Ce−νLT δT

≤ Q0

(
B ∈ B+

d,2δT
(H,LT , aT , bT )|[0,∆T ]

)
+Ke−µLT δT /2 + Ce−νLT δT

≤ Q0

(
B ∈ B+

3δT
(H,LT , aT , bT )|[0,∆T ]

)
+Ke−µLT δT /2 + 2Ce−νLT δT ,

which proves the upper bound in the statement of the lemma. The lower bound can

be obtained in the same way.
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4.3.3 Switching back to Y (s)

Lemma 4.12 bounds the probability that Y (s) stays in a tube with the sum of two terms,

one involving the probability that a Brownian motion stays in a slightly modified tube

and an error term. We can apply Proposition 4.7 to estimate the Brownian motion

probability. Our next step is changing the additive error term in Lemma 4.12 into a

multiplicative error.

In order to use the results from Lemma 4.10 and Lemma 4.12 in an optimal way,

we need to choose n, a and b dependent of T .

Recall the definition of δT and the conditions (i)-(v) from Section 4.1. Let

(a) nT = bδ−1/2
T c

(b) rT = 4δT .

If bT − aT = 1/nT , then clearly 4/n2
T ≤ bT − aT and

bT − aT =
⌊
δ
−1/2
T

⌋−1 ≥ δ1/2
T ≥ 8δT

if T is large, so the assumptions in Lemma 4.10 and Lemma 4.12 are fulfilled. Further-

more, rT = 4δT ≥ 1/(2n2
T ) + 3δT and it is easy to check that

√
rT
2
≤ 1

nT
≤
√
rT
2
· 1

1−√rT /2
≤
√
rT .

From now on, whenever we use n and r we always consider them to be chosen as in (a)

and (b), although we sometimes omit the dependence on T as a shorthand.

Proposition 4.13. Take aT , bT ∈ [−1, 1] and nT = bδ−1/2
T c such that bT −aT = 1/nT .

Let rT = 4δT . Recall the definitions of k+
n and Gk,ni,T from Lemma 4.10 and κ+

Ti−1,Ti
,

κ−Ti−1,Ti
and Γ before Lemma 4.7.

There exists T ′ > 0 such that when T ≥ T ′, for every i ∈ {1, . . . , NT }, for every

k ∈ {−n2, . . . , n2 − 1}

Q0

(
Y ∈ B+

1/(2n2)

(
Gk,ni,T , LT , aT , bT

)∣∣
[0,∆T ]

)
≤ exp

(
κ+
Ti−1,Ti

(
G, k+

n LT , (1 + rT )LT ,
aT−rT
1+rT

, bT+rT
1+rT

))
Γ
(

k+n
1+rT

, aT−rT1+rT
, bT+rT

1+rT

)
Ψ+
T ,

and for every k ∈ {−n2 + 4, . . . , n2 − 5}

Q0

(
Y ∈ B−

1/(2n2)

(
Gk,ni,T , LT , aT , bT

)∣∣
[0,∆T ]

)
≥ exp

(
κ−Ti−1,Ti

(
G, k+

n LT , (1− rT )LT ,
aT+rT
1−rT ,

bT−rT
1−rT

))
Γ
(

k+n
1−rT ,

aT+rT
1−rT ,

bT−rT
1−rT

)
Ψ−T ,

where

ψ+
T =

(
1 + C exp

(
− π2∆T

L2
T (1+rT )2

))(
1 +K ′ exp

(
− µ′

2 LT δT
))

and

ψ−T =
(

1− C exp
(
− π2∆T

L2
T (1−rT )2

))(
1−K ′ exp

(
− µ′

2 LT δT
))
.

Before proving Proposition 4.13 we state an easy result which we will need to

estimate from below the cosine terms in the proof.
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Lemma 4.14. Recall from Lemma 4.7 the definition

Γ(y, a, b) = cos
(πy

2

)∫ b

a
cos
(πν

2

)
dν.

Let a, b ∈ [−1, 1] and n ∈ N such that 1/n = b − a. Recall from Lemma 4.10 that

k+
n = (k + 1/2)/n2 for k ∈ {−n2, . . . , n2 − 1}.

If r is small enough and
√
r

2 ≤
1
n ≤

√
r

2(1−
√
r/2)

, for every k ∈ {−n2 + 4, . . . , n2 − 5}

0 < c1(r) ≤ Γ
( k+

n

1− r
,
a+ r

1− r
,
b− r
1− r

)
(4.9)

and for every k ∈ {−n2, . . . , n2 − 1}

0 < c1(r) ≤ Γ
( k+

n

1 + r
,
a− r
1 + r

,
b+ r

1 + r

)
, (4.10)

where c1(r) satisfies

lim
T→∞

− log(c1(δT ))

LT δT
= 0. (4.11)

Proof. When k ∈ {−n2 + 4, . . . , n2 − 5} we have |k+
n |≤ 1 − 9

2n2 ≤ 1 − 9r
8 . This gives,

writing 1
1−r = 1 + r

1−r , that∣∣∣∣ πk+
n

2(1− r)

∣∣∣∣ ≤ π

2

(
1 +

r

1− r

)(
1− 9r

8

)
=
π

2

(
1− πr

8(1− r)
,
)

and so

cos
( πk+

n

2(1− r)

)
≥ cos

(π
2
− πr

16(1− r)

)
= sin

( πr

16(1− r)

)
.

Using the parity of the cosine,

∫ b−r
1−r

a+r
1−r

cos
(πν

2

)
dν ≥

∫ 1

1− (b−a)
1−r + 2r

1−r

cos
(πν

2

)
dν =

2

π
− 2

π
sin

(
π

2
− π

2
· b− a− 2r

1− r

)
=

2

π
− 2

π
cos

(
π

2
· b− a− 2r

1− r

)
.

Using that b− a = 1/n ≥
√
r/2,

b− a− 2r

1− r
≥
√
r/2− 2r

1− r
≥
√
r/4

if r is small enough, so since cos
(
πx
2

)
decreasing when x ∈ (0, 1),

cos

(
π

2
· b− a+ 2r

1− r

)
≤ cos

(
π
√
r/2
)
.

It follows that∫ b−r
1−r

a+r
1−r

cos
(πν

2

)
dν ≥ 2

π
− 2

π
cos

(
π

2
· b− a+ 2r

1− r

)
≥ 2

π

(
1− cos(π

√
r/2)

)
.
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This shows that we can choose

c1(r) =
2

π
sin
( πr

16(1− r)

)(
1− cos(π

√
r/2)

)
.

To show (4.10), using that |k+
n |≤ 1 we have |k

+
n |

1+r ≤
1

1+r = 1− r
1+r , so

cos
( πk+

n

2(1 + r)

)
≥ cos

(π
2
− πr

2(1 + r)

)
= sin

( πr

2(1 + r)

)
.

It is easy to check that πr
2(1+r) ≥

πr
16(1−r) when r ≤ 7/9, so

sin
( πr

2(1 + r)

)
≥ sin

( πr

16(1− r)

)
.

We also have that ∫ b+r
1+r

a−r
1+r

cos
(πν

2

)
dν ≥

∫ b−r
1−r

a+r
1−r

cos
(πν

2

)
dν

because the interval on the left-hand side is bigger and the integrating function is always

positive on [−1, 1]. It follows that for every k ∈ {−n2, . . . , n2 − 1}

cos

(
πk+

n

2(1 + r)

)∫ b+r
1+r

a−r
1+r

cos
(πν

2

)
dν ≥ sin

( πr

16(1− r)

)∫ b−r
1−r

a+r
1−r

cos
(πν

2

)
dν

and so (4.10) is a consequence of the bound in (4.9).

We are left to prove (4.11). It suffices to show that

lim
T→∞

log
(

sin(δT )
)(
LT δT

)−1
+ log

(
1− cos(

√
δT )
)(
LT δT

)−1
= 0.

Recall that limT→∞NT δ
2
T = ∞ by (i), NT ≤ T 1/3 and δT < 1, so we also have

limT→∞ LT δT =∞. Using that limx→0
sin(x)
x = 1 and limx→0

1−cos(x)
x2

= 1/2, our limit

is equivalent to

lim
T→∞

log(δT )
(
LT δT

)−1
= 0.

This can be rewritten as

lim
T→∞

δT log
(
δT
)(
LT δ

2
T

)−1
,

which is 0 since limx→0+ x log x = 0 and limT→∞ LT δ
2
T =∞ from (i).

Proof of Proposition 4.13. In order to estimate the probability that Y (s) is in a tube

about Gk,ni,T we apply Lemma 4.12 starting from B+
1/(2nT )(G

k,n
i,T , LT , aT , bT )|[0,∆T ].

Recall that rT = 4δT ≥ 1/(2n2
T ) + 3δT .

Then for every T large enough

Q0

(
Y ∈ B+

1/(2n2
T )

(
Gk,ni,T , LT , aT , bT

)∣∣
[0,∆T ]

)
≤ Q0

(
B ∈ B+

rT

(
Gk,ni,T , LT , aT , bT

)∣∣
[0,∆T ]

)
+K ′ exp

(
− µ′LT δT

)
. (4.12)

Noting that (Gk,ni,T )′(s) = G′(s+ Ti−1) ∀s ∈ [0,∆T ] and Gk,ni,T (0) = −k+
n LT , Proposition
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4.7 gives that

Q0

(
B ∈ B+

rT

(
Gk,ni,T , LT , aT , bT

)∣∣
[0,∆T ]

)
≤ exp

(
κ+

0,∆T

(
Gk,ni,T , k

+
n LT , (1 + rT )LT ,

aT − rT
1 + rT

,
bT + rT
1 + rT

))
· Γ
( k+

n

1 + rT
,
aT − rT
1 + rT

,
bT + rT
1 + rT

)(
1 + Ce−π

2∆T /L
2
T

)
, (4.13)

where

κ+
u,t(H,w,L, a, b)

= −1

2

∫ t

u
H ′(s)2ds+H ′(u)w − π2(t− u)

8L2
− θ+

t (H,L, a, b)H ′(t) + L

∫ t

u
|H ′′(s)|ds,

and

Γ(y, a, b) = cos
(πy

2

)∫ b

a
cos
(πν

2

)
dν.

Denote by A the right-hand side in (4.13). Then, by shifting time to [Ti−1, Ti] we have

A = exp

(
κ+
Ti−1,Ti

(
G, k+

n LT , (1 + rT )LT ,
aT − rT
1 + rT

,
bT + rT
1 + rT

))
· Γ
( k+

n

1 + rT
,
aT − rT
1 + rT

,
bT + rT
1 + rT

)(
1 + Ce−π

2∆T /L
2
T

)
.

The proposition is proved if we show that the second term in (4.12) satisfies

K ′ exp
(
− µ′LT δT

)
≤ A ·K ′ exp

(
− µ′

2
LT δT

)
(4.14)

for T ≥ T ′. By (4.10) in Lemma 4.14

0 < c1(rT ) ≤ Γ
( k+

n

1 + rT
,
aT − rT
1 + rT

,
bT + rT
1 + rT

)
.

Using this, together with the fact that rT ≤ 4, |θ+
Ti
G′(Ti)|≤ 2|G′(Ti)|LT and |k+

n |≤ 1,

we have

A ≥ c1(rT ) exp
(
− 2|G′(Ti)|LT −

1

2

∫ Ti

Ti−1

G′(s)2ds− |G′(Ti−1)|LT −
π2∆T

8L2
T

)
,

so (4.14) is proved if we show that for T large

c1(rT ) exp
(
− 2|G′(Ti)|LT −

1

2

∫ Ti

Ti−1

G′(s)2ds− |G′(Ti−1)|LT −
π2∆T

8L2
T

)
≥ exp

(
− µ′

2
LT δT

)
.

Taking the logarithm of both terms and changing sign gives

− log(c1(rT )) + 2|G′(Ti)|LT +
1

2

∫ Ti

Ti−1

G′(s)2ds+ |G′(Ti−1)|LT +
π2∆T

8L2
T

≤ µ′

2
LT δT ,
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and dividing by LT δT we obtain

− log(c1(rT ))

LT δT
+

2

δT
|G′(Ti)|+

1

2LT δT

∫ Ti

Ti−1

G′(s)2ds

+
1

δT
|G′(Ti−1)|+ π2∆T

8L3
T δT

≤ µ′

2
. (4.15)

Recalling that ∆T = (T − T0)/NT and LT = LT 1/3, we have

∆T

L3
T δT

=
T − T0

L3T
· 1

NT δT
,

which tends to 0 as T →∞ since limT→∞ δTNT =∞ from (i). By Lemma 4.14,

lim
T→∞

− log(c1(rT ))
(
LT δT

)−1
= 0.

We also have that

2

δT
|G′(Ti)|+

1

2LT δT

∫ Ti

Ti−1

G′(s)2ds+
1

δT
|G′(Ti−1)|

≤ 3

δT
sup

s∈[T0,T ]
|G′(s)|+ 1

2LT δT

∫ Ti

Ti−1

G′(s)2ds,

which tends to 0 for every i ∈ {1, . . . , NT } by (ii) and (iv). We thus get that all the

terms on the left-hand side of (4.15) tend to 0 when T is large.

This concludes the proof of (4.14) and therefore the proof of the upper bound in

the statement of the proposition. The lower bound can be obtained with identical

calculations, using (4.9) in Lemma 4.14.

4.4. Proof of Theorem 4.1

The strategy of the proof of Theorem 4.1 is combining Lemma 4.10 with Proposition

4.13: we split a time interval of length ∆T from the end, then we estimate the proba-

bility that Y (s) stays near G(s) on this interval, and then we keep going backwards.

In order to iterate this procedure, we need an intermediate step. Indeed, Lemma

4.10 separates two time intervals in such a way that the endpoints of the first interval

are LT /n
2 apart and the tube on the next interval is widened or narrowed by LT /n

2.

However, the lemma requires that LT /n
2 ≤ (bLT −aLT )/4, and this assumption is not

satisfied at the endpoints of the first interval, since b − a = 1/n2. Therefore, before

applying the lemma again, we use a union bound to get the endpoints at the end of

the first interval LT /n apart. This is summarised in the following proposition.

Proposition 4.15. Let n ≥ 4. We use N as a shorthand for the number of intervals

NT . Recall that rT = 4δT . Let c2(n) be defined as in Lemma 4.16,

ψ
′+
T =

(
1 + C exp

(
− π2∆T

L2
T (1+rT )2

))(
1 +K ′ exp

(
− µ′

2 LT δT
))(

1 + c2(n)
)
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and

ψ
′−
T =

(
1− C exp

(
− π2∆T

L2
T (1−rT )2

))(
1−K ′ exp

(
− µ′

2 LT δT
))(

1− c2(n)
)
.

Then

Q0

(
Y ∈ B(GT , LT , p, q)|[0,T ]

)
≤
dqn−1e∑
jN=bpnc

n−1∑
jN−1=−n

· · ·
n−1∑
j0=−n

Q0

(
Y ∈ B

(
GT , LT ,

j0
n ,

j0+1
n

)∣∣
[0,T0]

)

·
N∏
i=1

{
exp

(
κ+
Ti−1,Ti

(
G, j+

i−1,n LT , (1 + rT )LT ,
ji/n−rT

1+rT
, ji/n+1/n+rT

1+rT

))}

·
N∏
i=1

{
Γ

(
ji−1 + 1/2

n(1 + rT )
,
ji/n− rT

1 + rT
,
ji/n+ 1/n+ rT

1 + rT

)
Ψ
′+
T

}
. (4.16)

and

Q0

(
Y ∈ B(GT , LT , p, q)|[0,T ]

)
≥

n−2∑
jN−1=−n+1

· · ·
n−2∑

j1=−n+1

Q0

(
Y ∈ B

(
GT , LT ,

x
L −

1
2nT

, xL + 1
2nT

)∣∣
[0,T0]

)

·
N∏
i=1

{
exp

(
κ−Ti−1,Ti

(
G, j−i−1,n LT , (1− rT )LT ,

ji/n+rT
1−rT , ji/n+1/n−rT

1−rT

))}

·
N∏
i=1

{
Γ

(
ji−1 + 1/2

n(1− rT )
,
ji/n+ rT

1− rT
,
ji/n+ 1/n− rT

1− rT

)
Ψ
′−
T

}
. (4.17)

where j+
i,n and j−i,n for i ∈ {0, . . . , N − 1} are defined by

j+
i,n =

ji/n+ 1/n if G′(Ti) > 0

ji/n− 1/n if G′(Ti) < 0
j−i,n =

ji/n− 1/n if G′(Ti) > 0

ji/n+ 1/n if G′(Ti) < 0,

and in (4.17) we define, for convenience of notation, j0 := x/L and jN := pn.

Before proving Proposition 4.15, we state separately some easy approximations of

the terms involving the cosine.

Lemma 4.16. Let n ≥ 4 and
√
r

2 ≤
1
n ≤

√
r

2(1−
√
r/2)

. Recall that for k ∈ {−n2, . . . , n2−1}
we defined k+

n = (k + 1/2)/n2.

If j ∈ {−n, . . . , n− 1} and k ∈ {jn, . . . , jn+ n− 1},

cos

(
πk+

n

2(1 + r)

)
≤ cos

(
π(j + 1/2)

2n(1 + r)

)
(1 + c2(n)) (4.18)

and if j ∈ {−n+ 1, . . . , n− 2} and k ∈ {jn, . . . , jn+ n− 1},

cos

(
πk+

n

2(1− r)

)
≥ cos

(
π(j + 1/2)

2n(1− r)

)
(1− c2(n)), (4.19)
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where c2(n) = π
4n sin

(
π
4n

)−1
.

Proof. Using that |k−jn−n/2+1/2|≤ n/2−1/2 ≤ n/2 for every k ∈ {jn, . . . , jn+n−1},
Taylor’s formula gives∣∣∣∣cos

(
πk+

n

2(1 + r)

)
− cos

(
π(j + 1/2)

2n(1 + r)

)∣∣∣∣ ≤ ∣∣∣∣π(k + 1/2)

2n2(1 + r)
− π(jn+ n/2)

2n2(1 + r)

∣∣∣∣ ≤ π

4n(1 + r)

and similarly ∣∣∣∣cos

(
πk+

n

2(1− r)

)
− cos

(
π(j + 1/2)

2n(1− r)

)∣∣∣∣ ≤ π

4n(1− r)
.

Since for every −n ≤ j ≤ n− 1∣∣∣∣π(j + 1/2)

2n(1 + r)

∣∣∣∣ ≤ π(n− 1/2)

2n(1 + r)
≤ π(n− 1/2)

2n
=
π

2
− π

4n

and the cosine is even, we have

cos

(
π(j + 1/2)

2n(1 + r)

)
≥ cos

(π
2
− π

4n

)
, (4.20)

which gives (4.18). Similarly, for every −n+1 ≤ j ≤ n−2, using that |j+1/2|≤ n−3/2

and
√
r ≤ 2/n∣∣∣∣π(j + 1/2)

2n(1− r)

∣∣∣∣ ≤ π(n− 3/2)

2n(1− r)
=

π

2(1− r)
− 3π

4n(1− r)
=
π

2
+

πr

2(1− r)
− 3π

4n(1− r)

≤ 2π

n2(1− r)
− 3π

4n(1− r)
.

Since for n ≥ 4

2π

n2(1− r)
− 3π

4n(1− r)
=

π

n(1− r)

( 2

n
− 3

4

)
≤ π

n(1− r)

(1

2
− 3

4

)
= − π

4n(1− r)
≤ − π

4n
,

it follows that

cos

(
π(j + 1/2)

2n(1− r)

)
≥ cos

(π
2
− π

4n

)
,

and so (4.19) is proved.

Proof of Proposition 4.15. We start by applying Lemma 4.10 once, to separate the last

time interval. This gives

Q0

(
Y ∈ B(GT , LT , p, q)|[0,TN ]

)
≤

n2−1∑
k=−n2

Q0

(
Y ∈ B

(
GT , LT ,

k
n2 ,

k+1
n2

)∣∣
[0,TN−1]

)
Q0

(
Y ∈ B+

1/(2n2)
(Gk,nN,T , LT , p, q)|[0,∆T ]

)
.
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By Proposition 4.13,

Q0

(
Y ∈ B+

1/(2n2)

(
Gk,nN,T , LT , p, q

)∣∣
[0,∆T ]

)
≤ exp

(
κ+
TN−1,TN

(
G, k+

n LT , (1 + rT )LT ,
p−rT
1+rT

, q+rT1+rT

))
Γ
(

k+n
1+rT

, p−rT1+rT
, q+rT1+rT

)
Ψ+
T ,

where

ψ+
T =

(
1 + C exp

(
− π2∆T

L2
T (1+rT )2

))(
1 +K ′ exp

(
− µ′

2 LT δT
))
.

Then

Q0

(
Y ∈ B(GT , LT , p, q)|[0,TN ]

)
≤

n2−1∑
k=−n2

Q0

(
Y ∈ B

(
GT , LT ,

k
n2 ,

k+1
n2

)∣∣
[0,TN−1]

)
· exp

(
κ+
TN−1,TN

(
G, k+

n LT , (1 + rT )LT ,
p−rT
1+rT

, q+rT1+rT

))
Γ
(

k+n
1+rT

, p−rT1+rT
, q+rT1+rT

)
Ψ+
T .

We split the sum over k into groups of n indices, thus obtaining

Q0

(
Y ∈ B(GT , LT , p, q)|[0,TN ]

)
≤

n−1∑
j=−n

jn+n−1∑
k=jn

Q0

(
Y ∈ B

(
GT , LT ,

k
n2 ,

k+1
n2

)∣∣
[0,TN−1]

)
· exp

(
κ+
TN−1,TN

(
G, k+

n LT , (1 + rT )LT ,
p−rT
1+rT

, q+rT1+rT

))
Γ
(

k+n
1+rT

, p−rT1+rT
, q+rT1+rT

)
Ψ+
T .

We now change the terms that depend on k into quantities involving j.

Let c2(n) = π
4n sin

(
π
4n

)−1
. By (4.18) in Lemma 4.16, If j ∈ {−n, . . . , n − 2} and

k ∈ {jn, . . . , jn+ n− 1},

cos

(
πk+

n

2(1 + r)

)
≤ cos

(
π(j + 1/2)

2n(1 + r)

)
(1 + c2(n)).

Furthermore, k+
n − j/n = (k + 1/2− jn)/n2 ≤ 1/n when k ∈ {jn, . . . , jn+ n− 1}.

Using this and the definition of j+
N−1,n, we have

Q0

(
Y ∈ B(GT , LT , p, q)|[0,T ]

)
≤

n−1∑
j=−n

Q0

(
Y ∈ B

(
G,LT ,

j
n ,

j+1
n

)∣∣
[0,TN−1]

)
· exp

(
κ+
TN−1,TN

(
G, j+

N−1,n LT , (1 + rT )LT ,
p−rT
1+rT

, q+rT1+rT

))
Γ
(

j+1/2
n(1+rT ) ,

p−rT
1+rT

, q+rT1+rT

)
Ψ
′+
T .

where Ψ
′+
T =

(
1 + c2(n)

)
Ψ+
T .

According to the notation introduced in the statement of the proposition, we denote

the index j in the sum above by jN−1,n, since it is the index determining the endpoint

of the process at time TN−1. We repeat this N times where, for 0 ≤ i ≤ N − 1, we

substitute k with ki to denote the index for splitting the tube width at time Ti. This

proves the upper bound in the statement of the proposition.
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The lower bound can be proved in the same way, using the lower bounds in Lemma

4.10, Proposition 4.13, Lemma 4.16 and j−N−1,n instead of j+
N−1,n.

Before we move to the next section and prove Theorem 4.1, we prove another

elementary result which will be useful in the proof to deal with the cosine terms that

appear combining all the Brownian motion probabilities.

Lemma 4.17. Recall that for y ∈ (−1, 1) and a, b ∈ (−1, 1) we defined

Γ
(
y, a, b

)
= cos

(πy
2

)∫ b

a
cos
(πν

2

)
dν.

For every n ≥ 4 and
√
r

2 ≤
1
n ≤

√
r

2(1−
√
r/2)

,

n−1∑
j=−n

Γ

(
j + 1/2

n(1 + r)
,
j/n− r
1 + r

,
j/n+ 1/n+ r

1 + r

)
≤ 1 + c3(n) (4.21)

and
n−2∑

j=−n+1

Γ

(
j + 1/2

n(1− r)
,
j/n+ r

1− r
,
j/n+ 1/n− r

1− r

)
≥ 1− c3(n), (4.22)

where c3(n) > 0 and limn→∞ c3(n) = 0.

Proof. We only prove the lower bound. Letting β = ν(1− r)− j/n, we have

∫ j/n+1/n−r
1−r

j/n+r
1−r

cos
(πν

2

)
dν =

1

1− r

∫ 1/n−r

r
cos

(
π(β + j/n)

2(1− r)

)
dβ.

For every β ∈ (r, 1/n− r), a Taylor expansion and then using that |β|≤ 1/n+ r ≤ 3/n

gives ∣∣∣∣cos

(
π(j/n+ 1/(2n))

2(1− r)

)
− cos

(
π(β + j/n)

2(1− r)

)∣∣∣∣ ≤ π|1/(2n)− β|
2(1− r)

≤ 2π

n(1− r)
,

so

cos

(
π(j/n+ 1/(2n))

2(1− r)

)
≥ sup

β∈(r,1/n−r)
cos

(
π(β + j/n)

2(1− r)

)
− 2π

n(1− r)
.

Substituting this and changing back to the original variable in the integral, we obtain

cos

(
π(j + 1/2)

2n(1− r)

)∫ j/n+1/n−r
1−r

j/n+r
1−r

cos
(πν

2

)
dν

≥

(
sup

β∈(r,1/n−r)
cos

(
π(β + j/n)

2(1− r)

)
− 2π

n(1− r)

)∫ 1/n−r

r
cos

(
π(β + j/n)

2(1− r)

)
dβ

1− r

≥
∫ 1/n−r

r
cos2

(
π(β + j/n)

2(1− r)

)
dβ

1− r
− 2π

n(1− r)

( 1/n

1− r

)
=

∫ j/n+1/n−r
1−r

j/n+r
1−r

cos2
(πν

2

)
dν − 2π

n2(1− r)2
.
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Taking the sum of the integrals over j, we obtain

n−2∑
j=−n+1

∫ j/n+1/n−r
1−r

j/n+r
1−r

cos2
(πν

2

)
dν =

∫ 1− 1
n(1−r)

−1+ 1
n(1−r)

cos2
(πν

2

)
dν

=

∫ 1

−1
cos2

(πν
2

)
dν − 2

∫ 1

1− 1
n(1−r)

cos2
(πν

2

)
dν

= 1− 2

∫ 1

1− 1
n(1−r)

cos2
(πν

2

)
dν ≥ 1− 2

n(1− r)
,

and so using that 1
1−r ≤

1
1−4/n2 = n2

n2−4
we ultimately get

n−2∑
j=−n+1

cos

(
π(j + 1/2)

2n(1− r)

)∫ j/n+1/n−r
1−r

j/n+r
1−r

cos
(πν

2

)
≥ 1− 2

n(1− r)
− 2n · 2π

n2(1− r)2

≥ 1− 2n

n2 − 4
− 4πn3

(n2 − 4)2
.

4.5. Proof of the upper bound in Theorem 4.1

The proof of the upper bound in Theorem 4.1 is a consequence of Proposition 4.15 and

the assumptions we made on G(s).

Proof of the upper bound in Theorem 4.1. In this proof, we use N as a shorthand for

the number of intervals NT . From (4.16) in Proposition 4.15,

Q0

(
Y ∈ B(GT , LT , p, q)|[0,T ]

)
≤
dqn−1e∑
jN=bpnc

n−1∑
jN−1=−n

· · ·
n−1∑
j0=−n

Q0

(
Y ∈ B

(
GT , LT ,

j0
n ,

j0+1
n

)∣∣
[0,T0]

)

·
N∏
i=1

{
exp

(
κ+
Ti−1,Ti

(
G, j+

i−1,n LT , (1 + rT )LT ,
ji/n−rT

1+rT
, ji/n+1/n+rT

1+rT

))}

·
N∏
i=1

{
Γ

(
ji−1 + 1/2

n(1 + rT )
,
ji/n− rT

1 + rT
,
ji/n+ 1/n+ rT

1 + rT

)
Ψ
′+
T

}
, (4.23)

where

κ+
u,t(H,w,L, a, b)

= −1

2

∫ t

u
H ′(s)2ds+H ′(u)w − π2(t− u)

8L2
− θ+

t (H,L, a, b)H ′(t) + L

∫ t

u
|H ′′(s)|ds

and

Γ(y, a, b) = cos
(πy

2

)∫ b

a
cos
(πν

2

)
dν.

The rest of the proof essentially consists of combining together the terms in the

products in (4.23). We first deal with the exponential terms involving κ+
Ti−1,Ti

. We
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have

N∏
i=1

exp

(
−1

2

∫ Ti

Ti−1

G′(s)2ds− π2(Ti − Ti−1)

8L2
T (1 + rT )2

+ LT (1 + rT )

∫ Ti

Ti−1

|G′′(s)|ds

)

= exp

(
−1

2

∫ T

T0

G′(s)2ds+ LT (1 + rT )

∫ T

T0

|G′′(s)|ds− π2(T − T0)

8L2
T (1 + rT )2

)
. (4.24)

We show that the terms involving θ+
Ti

and j+
i−1,n can be rewritten as a telescopic

sum where all the terms are small, except from the first and the last one. Recall the

definitions

θ+
Ti

(G,L, a, b) =

aL if G′(Ti) > 0

bL if G′(Ti) < 0,
j+
i,n =

ji/n+ 1/n if G′(Ti) > 0

ji/n− 1/n if G′(Ti) < 0.

Shifting the index i in the j+
i−1,n gives that

N∏
i=1

exp
(
−θ+

Ti

(
G, (1 + rT )LT ,

ji/n−rT
1+rT

, ji/n+1/n+rT
1+rT

)
G′(Ti) + j+

i−1,nLTG
′(Ti−1)

)
=

{
N−1∏
i=1

exp
(
− θ+

Ti

(
G, (1 + rT )LT ,

ji/n−rT
1+rT

, ji/n+1/n+rT
1+rT

)
G′(Ti) + j+

i,nLTG
′(Ti)

}
· exp

(
−θ+

TN

(
G, (1 + rT )LT ,

jN/n−rT
1+rT

, jN/n+1/n+rT
1+rT

)
G′(TN ) + j+

0,nLTG
′(T0)

)
.

If G′(Ti) > 0, using that 1
1−
√
r/2
≤ 2 for every r < 1, and so 1

n ≤
√
r

2 ·
1

1−
√
r/2
≤
√
r,

we have

exp
(
−θ+

Ti

(
G, (1 + rT )LT ,

ji/n−rT
1+rT

, ji/n+1/n+rT
1+rT

)
G′(Ti) + j+

i,nLTG
′(Ti)

)
= exp

(
−G′(Ti)

(ji
n
− rT

)
LT +G′(Ti)

(ji
n

+
1

n

)
LT

)
= exp

(
G′(Ti)

(
rT +

1

n

)
LT

)
≤ exp

(
3
√
rT |G′(Ti)|LT

)
,

and it is easy to check that the same holds when G′(Ti) < 0. Substituting this in the

above and using that

exp
(
−θ+

TN

(
G, (1 + rT )LT ,

jN/n−rT
1+rT

, jN/n+1/n+rT
1+rT

)
G′(TN ) + j+

0,nLTG
′(T0)

)
≤ exp

(
2|G′(TN )|LT + |G′(T0)|LT

)
,

we obtain that

N∏
i=1

exp
(
−θ+

Ti

(
G, (1 + rT )LT ,

ji/n−rT
1+rT

, ji/n+1/n+rT
1+rT

)
G′(Ti) + j+

i−1,nLTG
′(Ti−1)

)
≤ exp

(
3
√
rTLT

N−1∑
i=1

|G′(Ti)|+2|G′(TN )|LT + |G′(T0)|LT
)
. (4.25)
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Going back to (4.23) and substituting (4.24) and (4.25), we have

Q0(Y ∈ B(GT , LT , p, q)|[0,T ])

≤ exp

(
−1

2

∫ T

T0

G′(s)2ds+ LT (1 + rT )

∫ T

T0

|G′′(s)|ds− π2(T − T0)

8L2
T (1 + rT )2

)
· exp

(
3
√
rTLT

N−1∑
i=1

|G′(Ti)|+2|G′(TN )|LT + |G′(T0)|LT
)

·
dqn−1e∑
jN=bpnc

n−1∑
jN−1=−n

· · ·
n−1∑
j0=−n

Q0

(
Y ∈ B

(
GT , LT ,

j0
n ,

j0+1
n

)∣∣
[0,T0]

)

·
N∏
i=1

{
Γ
(ji−1 + 1/2

n(1 + rT )
,
ji/n− rT

1 + rT
,
ji/n+ 1/n+ rT

1 + rT

)
Ψ
′+
T

}
. (4.26)

We now deal with the sums in the last two lines of (4.26). The error terms

Ψ
′+
T =

(
1 + c2(n)

)(
1 + C exp

(
− π2∆T

L2
T (1+rT )2

))(
1 +K ′e−

µ′
2
LT δT

)
are independent of i and j0, . . . , jN−1. Recall that we defined

Γ(y, a, b) = cos
(πy

2

)∫ b

a
cos
(πν

2

)
dν.

With a shift and then using that Γ
(
j0+1/2
n(1+rT ) ,

jN/n−rT
1+rT

, jN/n+1/n+rT
1+rT

)
≤ 3

nT
, we can write

N∏
i=1

Γ
(ji−1 + 1/2

n(1 + rT )
,
ji/n− rT

1 + rT
,
ji/n+ 1/n+ rT

1 + rT

)
= Γ

(
j0+1/2
n(1+rT ) ,

jN/n−rT
1+rT

, jN/n+1/n+rT
1+rT

)N−1∏
i=1

Γ
( ji + 1/2

n(1 + rT )
,
ji/n− rT

1 + rT
,
ji/n+ 1/n+ rT

1 + rT

)
≤ 3

nT

N−1∏
i=1

Γ
( ji + 1/2

n(1 + rT )
,
ji/n− rT

1 + rT
,
ji/n+ 1/n+ rT

1 + rT

)
.

Using that dqn− 1e − bpnc ≤ qn− pn, this gives that

dqn−1e∑
jN=bpnc

n−1∑
jN−1=−n

· · ·
n−1∑
j0=−n

Q0

(
Y ∈ B

(
GT , LT ,

j0
n ,

j0+1
n

)∣∣
[0,T0]

)

·
N∏
i=1

{
Γ
(ji−1 + 1/2

n(1 + rT )
,
ji/n− rT

1 + rT
,
ji/n+ 1/n+ rT

1 + rT

)
Ψ
′+
T

}

≤ 3(q − p)
(
Ψ
′+
T

)N n−1∑
j0=−n

Q0

(
Y ∈ B

(
GT , LT ,

j0
n ,

j0+1
n

)∣∣
[0,T0]

)

·
{N−1∏

i=1

n−1∑
ji=−n

Γ
( ji + 1/2

n(1 + rT )
,
ji/n− rT

1 + rT
,
ji/n+ 1/n+ rT

1 + rT

)}
.
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By Lemma 4.17, for every n ≥ 4 and
√
r

2 ≤
1
n ≤

√
r

2(1−
√
r/2)

,

n−1∑
j=−n

Γ

(
j + 1/2

n(1 + r)
,
j/n− r
1 + r

,
j/n+ 1/n+ r

1 + r

)
≤ 1 + c3(n),

so the above is smaller than

3(q − p)
(
Ψ
′+
T

)N n−1∑
j0=−n

Q0

(
Y ∈ B

(
GT , LT ,

j0
n ,

j0+1
n

)∣∣
[0,T0]

)
· (1 + c3(n))N−1.

After taking the sum over j0 and bounding the probability with 1, since q− p ≤ 2 this

is again smaller than

6
(
Ψ
′+
T

)N(
1 + c3(n)

)N−1
.

Returning to (4.26), we deduce that

Q0(Y ∈ B(GT , LT , p, q)|[0,T ])

≤ exp

(
−1

2

∫ T

T0

G′(s)2ds+ LT (1 + rT )

∫ T

T0

|G′′(s)|ds− π2(T − T0)

8L2
T (1 + rT )2

)
· exp

(
3
√
rTLT

N−1∑
i=1

|G′(Ti)|+2|G′(TN )|LT + |G′(T0)|LT

)
· 6
(
Ψ
′+
T

)N(
1 + c3(n)

)N−1
.

(4.27)

Recall that we are interested in P0

(
X ∈ B(FT , LT , p, q)|[0,T ]

)
, and in Lemma 4.4 we

showed that when z > rE[ξ]

P0

(
X ∈ B(FT , LT , p, q)|[0,T ]

)
≤ exp

(
− Λ(z)T − λ(z)(G(T )− xT + pLT )

)
Qλ(z)

0

(
Y ∈ B(G̃T , L̃T , p, q)|[0,T ]

)
,

where G̃T (s) = GT (s)
(
rφ′′(λ(z))

)−1/2
and L̃T = LT

(
rφ′′(λ(z))

)−1/2
.

An upper bound for Qλ(z)
0

(
Y ∈ B(G̃T , L̃T , p, q)|[0,T ]

)
is given by (4.27) with G̃T and

L̃T instead of GT and LT , so combining this with Lemma 4.4 gives that

P0

(
X ∈ B(FT , LT , p, q)|[0,T ]

)
≤ exp

(
− Λ(z)T − λ(z)(G(T )− xT + pLT )

)
· 6
(
Ψ
′+
T

)N(
1 + c3(n)

)N−1

· exp

(
−1

2

∫ T

T0

G′(s)2

rφ′′(λ(z))
ds+ LT (1 + rT )

∫ T

T0

|G′′(s)|
rφ′′(λ(z))

ds− π2(T − T0)rφ′′(λ(z))

8L2
T (1 + rT )2

)
· exp

(
3
√
rTLT

N−1∑
i=1

|G′(Ti)|
rφ′′(λ(z))

+
2|G′(TN )|LT
rφ′′(λ(z))

+
|G′(T0)|LT
rφ′′(λ(z))

)
.
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We take logarithms on both sides and divide by T 1/3, thus getting

1

T 1/3
logP0

(
X ∈ B(FT , LT , p, q)|[0,T ]

)
≤ 1

T 1/3

(
− Λ(z)T − λ(z)G(T )

)
+
λ(z)xT
T 1/3

− λ(z)pL+
log(6)

T 1/3
+

NT

T 1/3
log
(
Ψ
′+
T

)
+
NT − 1

T 1/3
log
(
1 + c3(nT )

)
− 1

2T 1/3

∫ T

T0

G′(s)2

rφ′′(λ(z))
ds+ L(1 + rT )

∫ T

T0

|G′′(s)|
rφ′′(λ(z))

ds

− π2(T − T0)rφ′′(λ(z))

8L2T (1 + rT )2
+ 3
√
rTL

N−1∑
i=1

|G′(Ti)|
rφ′′(λ(z))

+
2|G′(TN )|L
rφ′′(λ(z))

+
|G′(T0)|L
rφ′′(λ(z))

.

Writing

− 1

2T 1/3

∫ T

T0

G′(s)2

rφ′′(λ(z))
ds = − 1

2T 1/3

∫ T

0

G′(s)2

rφ′′(λ(z))
ds+

1

2T 1/3

∫ T0

0

G′(s)2

rφ′′(λ(z))
ds

and rearranging terms, this is equivalent to

1

T 1/3

(
logP0(X ∈ B(FT , LT , p, q)|[0,T ]) + Λ(z)T + λ(z)G(T ) +

1

2

∫ T

0

G′(s)2

rφ′′(λ(z))
ds

)
≤ λ(z)xT

T 1/3
− λ(z)pL+

log(6)

T 1/3
+

NT

T 1/3
log
(
Ψ
′+
T

)
+
NT − 1

T 1/3
log
(
1 + c3(nT )

)
+

1

2T 1/3

∫ T0

0

G′(s)2

rφ′′(λ(z))
ds+ L(1 + rT )

∫ T

T0

|G′′(s)|
rφ′′(λ(z))

ds− π2(T − T0)rφ′′(λ(z))

8L2T (1 + rT )2

+ 3
√
rTL

N−1∑
i=1

|G′(Ti)|
rφ′′(λ(z))

+
2|G′(TN )|L
rφ′′(λ(z))

+
|G′(T0)|L
rφ′′(λ(z))

.

We now take the limit as T tends to infinity. For the first term, recall that xT /T
1/3 → x

with x ∈ (−L,L). We defined

Ψ
′+
T =

(
1 + c2(nT )

)(
1 + C exp

(
− π2∆T

L2
T (1+rT )2

))(
1 +K ′e−

µ′
2
LT δT

)
.

Since limT→∞∆T /L
2
T =∞, limT→∞ LT δT =∞ and limT→∞NT /T

1/3 = 0, we have

lim
T→∞

NT

T 1/3
log
(

1 + C exp
(
− π2∆T

L2
T (1+rT )2

)
+ lim
T→∞

NT

T 1/3
log
(

1 +K ′e−
µ′
2
LT δT

)
= 0.

Recalling that c2(n) = π
4n sin

(
π
4n

)−1
, and so limT→∞ c2(nT ) = 1, we also have

lim
T→∞

NT

T 1/3
log
(
1 + c2(nT )

)
= 0,

which ultimately shows that

lim
T→∞

NT

T 1/3
log
(
Ψ
′+
T

)
= 0.

Lemma 4.17 ensures that limT→∞ c3(nT ) = 0, so

lim
T→∞

NT − 1

T 1/3
log
(
1 + c3(nT )

)
= 0.
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Recall that T0 = T 1/3−ε and that, as we showed in (vi), there exists M > 0 such that

|G′(s)|≤M for every s ≥ 0. Then

lim
T→∞

1

T 1/3

∫ T0

0

G′(s)2

rφ′′(λ(z))
ds ≤ lim

T→∞

M2T0

rφ′′(λ(z))T 1/3
= 0.

By assumption (v),

lim
T→∞

L(1 + rT )

rφ′′(λ(z))

∫ T

T0

|G′′(s)|ds = 0.

We also have that

3
√
rTL

NT−1∑
i=1

|G′(Ti)|
rφ′′(λ(z))

+
2|G′(TN )|L
rφ′′(λ(z))

+
|G′(T0)|L
rφ′′(λ(z))

tends to 0 by (iii) and the fact that limT→∞|G′(T )|= 0. Putting all these results

together, we conclude that

lim
T→∞

1

T 1/3

(
logP0(X ∈ B(FT , LT , p, q)|[0,T ]) + Λ(z)T

+ λ(z)G(T ) +
1

2

∫ T

0

G′(s)2

rφ′′(λ(z))
ds

)
≤ λ(z)x− λ(z)pL− π2rφ′′(λ(z))

8L2
.

4.6. Proof of the lower bound in Theorem 4.1

In all the lemmas that led to the proof of Theorem 4.1 we proved upper bounds and

(most of the times, symmetric) lower bounds, which ensure that we can replicate the

same proof structure we used for the upper bound to prove the lower bound as well.

The only substantial technicality arises in the lower bound of the probability that Y (s)

stays in the tube about GT (s) at small times.

From the calculations in Section 4.7, we see that the less strict condition on G(s)

is achieved by choosing T0 as large as possible, provided that limT→∞ δTL
2
T /T0 = ∞,

which gives T0 = T 1/3−ε. We use a two stage argument to bound from below the

probability that Y (s) stays near GT (s) on [0, T0]: up to small times T ′0 = T ν , we use

the fact that the contribution of G(s) is negligible compared to the size of the tube

for such a small time. After T ′0, which however small, tends to infinity as T tends to

infinity, we can use that the derivatives of G tend to zero to show that the probability

that Y (s) stays near GT (s) tends to one exponentially fast, and fast enough to overrule

the error terms.

Lemma 4.18. Let T ′0 = T ν and T0 = T 1/3−ε, with ε ∈ (0, 1/3). Recall that we defined

nT = bδ−1/2
T c and we assumed that |xT /LT − x/L|<

√
δT /8. Then

lim
T→∞

1

LT
logQ0

(
Y ∈ B

(
GT , LT ,

x
L −

1
2nT

, xL + 1
2nT

)∣∣
[0,T0]

)
= 0.
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Proof. Since δT < 8/nT , by Lemma 4.12 we have

Q0

(
Y ∈ B

(
GT , LT ,

x
L −

1
2nT

, xL + 1
2nT

)∣∣
[0,T0]

)
≥ Q0

(
B ∈ B−3δT

(
GT , LT ,

x
L −

1
2nT

, xL + 1
2nT

)∣∣
[0,T0]

)
−K ′ exp

(
− µ′LT δT

)
(4.28)

for T large enough. Using standard properties of Brownian motion, for large T we can

write

Q0

(
B ∈ B−3δT

(
GT , LT ,

x
L −

1
2nT

, xL + 1
2nT

)∣∣
[0,T0]

)
≥ Q0

(
B ∈ B

(
GT , (1− 3δT )LT ,

xT /LT−1/(2n2
T )

1−3δT
,
xT /LT+1/(2n2

T )
1−3δT

)∣∣∣
[0,T ′0]

)
· QxT

(
B ∈ B−

3δT+1/(2n2
T )

(
G̃, LT ,

x
L −

1
2nT

, xL + 1
2nT

)∣∣
[0,T0−T ′0]

)
, (4.29)

where G̃(s) = G(s + T ′0) − G(T ′0), s ∈ [0, T0 − T ′0]. We start by finding a lower bound

on the first term. Recall that GT (s) = G(s) − xT . As we deduced in (vi), we have

|G′(s)|≤M ∀s ≥ 0, where M is a constant independent of T . The mean value Theorem

gives that

sup
s∈[0,T ′0]

|G(s)|≤ sup
s∈[0,T ′0]

|G′(s)|T ′0 ≤MT ′0.

Since
T ′0

LT δ
2
T
� 1

T 1/3−νδ2T
and this tends to zero by assumption (i), then MT ′0/LT ≤ δ2

T

when T is large enough. Using this, and that 1
2n2
T
− δ2

T ≥
δT
2 − δ

2
T ≥

δT
4 for large T , we

have

Q0

(
B ∈ B

(
GT , (1− 3δT )LT ,

xT /LT−1/(2n2
T )

1−3δT
,
xT /LT+1/(2n2

T )
1−3δT

)∣∣∣
[0,T ′0]

)
≥ QxT

(
B ∈ B

(
H, (1− 4δT )LT ,

xT /LT−δT /4
1−4δT

, xT /LT+δT /4
1−4δT

)∣∣∣
[0,T ′0]

)
where H(s) ≡ 0. Lemma 4.9 states that if x ∈ (−L,L) and −L+ εL < x < L− εL, for

any H : [0,∞)→ R

Qx

(
B ∈ B

(
H,L, xL − ε,

x
L + ε

)∣∣
[0,t]

)
≥ exp

(
−H ′(t)(x+εL)+H ′(0)x−L

∫ t

0
|H ′′(s)|ds−1

2

∫ t

0
H ′(s)2ds

)(
1− 2

√
2t√

πεL
e−

ε2L2

2t

)
.

This, with H(s) ≡ 0 and εLT = δTLT /4, gives

QxT

(
B ∈ B

(
H, (1− 4δT )LT ,

xT /LT−δT /4
1−4δT

, xT /LT+δT /4
1−4δT

)∣∣∣
[0,T ′0]

)
≥ 1− 2√

π
·

4
√

2T ′0
δTLT

exp

(
−

δ2
TL

2
T

42 · 2T ′0

)
.

Since δ2
TL

2
T (T ′0)−1 � δ2

TT
2/3−ε, and this tends to infinity by (i), the right-hand side can

be made bigger than 1/2 by choosing T large enough.

We now consider the second term in (4.29). since 1/nT ≤ 2δT , we have 3δT + 1
2n2
T
≤
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8δT for large T . Furthermore, using that 1
2nT
− 8δT ≥

√
δT
4 for T large enough and

| xTLT −
x
L |<

√
δT
8 , we have

(
xT
LT
−
√
δT
8 , xTLT +

√
δT
8

)
⊆
(
x
L −

1
2nT

+ 8δT ,
x
L + 1

2nT
− 8δT

)
.

Then

QxT

(
B ∈ B−

3δT+1/(2n2
T )

(
G̃T , LT ,

x
L −

1
2nT

, xL + 1
2nT

)∣∣
[0,T0−T ′0]

)
≥ QxT

(
B ∈ B

(
G̃T , (1− 8δT )LT ,

xT /LT−
√
δT /8

1−8δT
, xT /LT+

√
δT /8

1−8δT

)∣∣∣
[0,T0−T ′0]

)
.

Using Lemma 4.9 with H(s) = G̃(s) and εLT =
√
δTLT /8, this is bigger than

A := exp
(
−G′(T0)

(
xT +

√
δTLT

8

)
+G′(T ′0)xT − LT (1− 8δT )

∫ T0

T ′0

|G′′(s)|ds
)

· exp
(
− 1

2

∫ T0

T ′0

G′(s)2ds
)(

1− 2√
π
·

8
√

2(T0 − T ′0)
√
δTLT

exp
(
− δTL

2
T

82·2(T0−T ′0)

))
.

Then

logA

LT
= −G′(T0)

(
xT
LT

+
√
δT
8

)
+G′(T ′0) xTLT − (1− 8δT )

∫ T0

T ′0

|G′′(s)|ds

− 1

2LT

∫ T0

T ′0

G′(s)2ds+
1

LT
log

(
1− 2√

π
·

8
√

2(T0 − T ′0)
√
δTLT

exp
(
− δTL

2
T

82·2(T0−T ′0)

))
.

Note that δTL
2
TT
−1
0 � δTT

1/3, which tends to infinity by (i). We also have that

limT→∞ xT /LT = x/L ∈ (−1, 1) and limT→∞G
′(T ′0) = 0. Furthermore,

1

LT

∫ T0

T ′0

G′(s)2ds ≤ M2T0

LT
,

which tends to 0. Using all these facts, and assumption (v) for the integral of the

second derivative, we obtain

lim
T→∞

logA

LT
= 0. (4.30)

Going back to (4.29), we have thus shown that

Q0

(
B ∈ B−3δT

(
GT , LT ,

x
L −

1
2nT

, xL + 1
2nT

)∣∣
[0,T0]

)
≥ A/2

for T large. Therefore, substituting this in (4.28), we obtain

Q0

(
Y ∈ B

(
GT , LT ,

x
L −

1
2nT

, xL + 1
2nT

)∣∣
[0,T0]

)
≥ A/2−K ′ exp

(
− µ′LT δT

)
.
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Then

1

LT
logQ0

(
Y ∈ B

(
GT , LT ,

x
L −

1
2nT

, xL + 1
2nT

)∣∣
[0,T0]

)
≥ 1

LT
log
(A

2

)
+

1

LT
log
(

1− 2K ′

A
exp

(
− µ′LT δT

))
,

which tends to 0 by (4.30) and the fact that

1

LT
log

(
1

A
· exp

(
− µ′LT δT

))
= − log(A)

LT
− µ′δT

is negative and tends to 0.

Lemma 4.18 was the only extra ingredient required for the lower bound, which we

are now ready to prove.

Proof of the lower bound in Theorem 4.1. From (4.17) in Proposition 4.15 and anal-

ogous considerations on the exponential terms as those we have used for the upper

bound, we have

Q0(Y ∈ B(GT , LT , p, q)|[0,T ])

≥ exp

(
−1

2

∫ T

T0

G′(s)2ds− LT (1− rT )

∫ T

T0

|G′′(s)|ds− π2(T − T0)

8L2
T (1− rT )2

)
· exp

(
− 3
√
rTLT

N−1∑
i=1

|G′(Ti)|−2|G′(TN )|LT − |G′(T0)|LT
)

·
n−2∑

jN−1=−n+1

· · ·
n−2∑

j1=−n+1

Q0

(
Y ∈ B

(
GT , LT ,

x
L −

1
2nT

, xL + 1
2nT

)∣∣
[0,T0]

)

·
N∏
i=1

{
Γ
(ji−1 + 1/2

n(1− rT )
,
ji/n+ rT

1− rT
,
ji/n+ 1/n− rT

1− rT

)
Ψ
′−
T

}
. (4.31)

where j0 := x and jN := pn. Writing

N∏
i=1

Γ
(ji−1 + 1/2

n(1− r)
,
ji/n+ r

1− r
,
ji/n+ 1/n− r

1− r

)
= Γ

( x+ 1/2

n(1− r)
,
p+ r

1− r
,
p+ 1/n− r

1− r

)N−1∏
i=1

Γ
( ji + 1/2

n(1− r)
,
ji/n+ r

1− r
,
ji/n+ 1/n− r

1− r

)
,

136



we have that

n−2∑
jN−1=−n+1

· · ·
n−2∑

j1=−n+1

Q0

(
Y ∈ B

(
GT , LT ,

x
L −

1
2n ,

x
L + 1

2n

)∣∣
[0,T0]

)

·
N∏
i=1

{
Γ
(ji−1 + 1/2

n(1− r)
,
ji/n+ r

1− r
,
ji/n+ 1/n− r

1− r

)
Ψ
′−
T

}
≥ Q0

(
Y ∈ B

(
GT , LT ,

x
L −

1
2n ,

x
L + 1

2n

)∣∣
[0,T0]

)
Γ
( x+ 1/2

n(1− r)
,
p+ r

1− r
,
p+ 1/n− r

1− r

)
·
(

Ψ
′−
T

)N
·
N−1∏
i=1

n−2∑
ji=−n+1

Γ
( ji + 1/2

n(1− r)
,
ji/n+ r

1− r
,
ji/n+ 1/n− r

1− r

)
.

From (4.22) in Lemma 4.17, for every n ≥ 4 and
√
r

2 ≤
1
n ≤

√
r

2(1−
√
r/2)

,

n−2∑
j=−n+1

Γ

(
j + 1/2

n(1− r)
,
j/n+ r

1− r
,
j/n+ 1/n− r

1− r

)
≥ 1− c3(n),

so going back to (4.31), this gives that

Q0(Y ∈ B(GT , LT , p, q)|[0,T ])

≥ exp

(
−1

2

∫ T

T0

G′(s)2ds− LT (1− rT )

∫ T

T0

|G′′(s)|ds− π2(T − T0)

8L2
T (1− rT )2

)
· exp

(
− 3
√
rTLT

N−1∑
i=1

|G′(Ti)|−2|G′(TN )|LT − |G′(T0)|LT
)

·Q0

(
Y ∈ B

(
GT , LT ,

x
L −

1
2nT

, xL + 1
2nT

)∣∣
[0,T0]

)
· Γ
( x+ 1/2

nT (1− rT )
,
p+ rT
1− rT

,
p+ 1/nT − rT

1− rT

) (
Ψ
′−
T

)N(
1− c3(nT )

)N−1
. (4.32)

Lemma 4.4 ensures that, if z > rE[ξ], for any ε > 0 small enough

P0(X ∈ B(FT , LT , p, q)|[0,T ])

≥ e−Λ(z)T−λ(z)G(T )+λ(z)xT−λ(z)(p+ε)LTQλ(z)(Y ∈ B(G̃T , L̃T , p, p+ ε)|[0,T ]),

where G̃T (s) = GT (s)
(
rφ′′(λ(z))

)−1
and L̃T = LT

(
rφ′′(λ(z))

)−1
. A lower bound for

Qλ(z)
(
Y ∈ B(G̃T , L̃T , p, p + ε)|[0,T ]

)
is given by (4.32) with GT , LT and q replaced by
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G̃T , L̃T and p+ ε. This gives

P0

(
X ∈ B(FT , LT , p, q)|[0,T ]

)
≥ exp

(
− Λ(z)T − λ(z)G(T ) + λ(z)xT − λ(z)(p+ ε)LT

)
· exp

(
−1

2

∫ T

T0

G′(s)2

rφ′′(λ(z))
ds− LT (1− rT )

∫ T

T0

|G′′(s)|
rφ′′(λ(z))

ds− π2(T − T0)rφ′′(λ(z))

8L2
T (1− rT )2

)
· exp

(
−3
√
rTLT

N−1∑
i=1

|G′(Ti)|
rφ′′(λ(z))

− 2|G′(TN )|LT
rφ′′(λ(z))

− |G
′(T0)|LT

rφ′′(λ(z))

)
·Q0

(
Y ∈ B

(
G,LT ,

x
L −

1
2nT

, xL + 1
2nT

)∣∣
[0,T0]

)
· Γ
( x+ 1/2

nT (1− rT )
,
p+ rT
1− rT

,
p+ 1/nT − rT

1− rT

) (
Ψ
′−
T

)N(
1− c3(nT )

)N−1
. (4.33)

Write

− 1

2T 1/3

∫ T

T0

G′(s)2

rφ′′(λ(z))
ds = − 1

2T 1/3

∫ T

0

G′(s)2

rφ′′(λ(z))
ds+

1

2T 1/3

∫ T0

0

G′(s)2

rφ′′(λ(z))
ds.

Taking logarithms on both sides, dividing by T 1/3 and rearranging (in the same way

we have done for the upper bound) gives that

1

T 1/3

(
logP0(X ∈ B(FT , LT , p, q)|[0,T ]) + Λ(z)T + λ(z)G(T ) +

1

2

∫ T

0

G′(s)2

rφ′′(λ(z))
ds

)
≥ λ(z)xT

T 1/3
− λ(z)(p+ ε)L− 1

2T 1/3

∫ T0

0

G′(s)2

rφ′′(λ(z))
ds− L(1− rT )

∫ T

T0

|G′′(s)|
rφ′′(λ(z))

ds

− π2(T − T0)rφ′′(λ(z))

8L2T (1− rT )2
− 3
√
rTL

N−1∑
i=1

|G′(Ti)|
rφ′′(λ(z))

− 2|G′(TN )|L
rφ′′(λ(z))

− |G
′(T0)|L

rφ′′(λ(z))

+
1

T 1/3
logQ0

(
Y ∈ B

(
GT , LT ,

x
L −

1
2nT

, xL + 1
2nT

)∣∣
[0,T0]

)
+
NT − 1

T 1/3
log
(
1− c3(nT )

)
+

1

T 1/3
log Γ

( x+ 1/2

nT (1− rT )
,
p+ rT
1− rT

,
p+ 1/nT − rT

1− rT

)
+

NT

T 1/3
log
(
Ψ
′−
T

)
.

Lemma 4.18 gives that

lim
T→∞

1

T 1/3
logQ0

(
Y ∈ B

(
GT , LT ,

x
L −

1
2nT

, xL + 1
2nT

)∣∣
[0,T0]

)
= 0.

Recall that we defined

ψ
′−
T =

(
1− C exp

(
− π2∆T

L2
T (1−rT )2

))(
1−K ′ exp

(
− µ′

2 LT δT
))(

1− c2(n)
)
,

where c2(n) = π
4n sin

(
π
4n

)−1
. We have

lim
T→∞

NT

T 1/3
log
(
1− c2(nT )

)
= 0.

With analogous considerations for the other terms as the ones we made at the end of
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the proof of the upper bound when we take the limit as T tends to infinity we get

lim
T→∞

1

T 1/3

(
logP0(X ∈ B(FT , LT , p, q)|[0,T ]+Λ(z)T

+ λ(z)G(T ) +
1

2

∫ T

0

G′(s)2

rφ′′(λ(z))
ds

)
≥ λ(z)x− λ(z)(p+ ε)L− π2rφ′′(λ(z))

8L2
.

Since ε was arbitrary, this completes the proof.

4.7. Example of a relevant choice of G(s)

In this section we show that functions of the formG(s) = A(s+1)α satisfy the conditions

(i)-(v) for every A ∈ R and α ∈ (0, 7/10]. Note that G′(s) = αA(s+1)α−1 is a positive,

decreasing function and limT→∞G
′(T )→ 0. Since G′′(s) = α(α− 1)A(s+ 1)α−2 < 0,∫ t

u
|G′′(s)|ds = G′(u)−G′(t)

so clearly (v) is satisfied as the endpoints of the interval tend to infinity.

We take δT = T−η, where η will be chosen later. We write h(t) � g(t) if there exist

two constants c, C > 0 such that ch(t) ≤ g(t) ≤ Ch(t) for every t.

Then (i) requires 1/3− ν − 2η > 0, that is

η < 1/6− ν/2. (4.34)

For (ii), since
1

δT
sup

s∈[T0,T ]
|G′(s)|= T ηG′(T0) � T η+(α−1)(1/3−ε),

we need

η < 1/3− α/3− ε(1− α). (4.35)

We now move to (iii). Recall that ∆T � T 2/3+ν , so since Ti = T0 + i∆T for i ∈
{1, . . . , NT } we have Ti � iT 2/3+ν . Then, using that for α ∈ (0, 1)

NT∑
i=1

iα−1 ≤
NT∑
i=1

∫ i

i−1
xα−1dx =

∫ NT

0
xα−1dx =

Nα
T

α
≤ Tα/3−αν

α
,

we have

NT∑
i=1

|G′(Ti)|�
NT∑
i=1

Tα−1
i � T (2/3+ν)(α−1)

NT∑
i=1

iα−1 ≤ T (2/3+ν)(α−1)T
α/3−αν

α

� T 2α/3−2/3+αν−ν+α/3−αν

= Tα−2/3−ν

and so to get (iii) we need α− 2/3− ν − η/2 < 0, that is

η > 2α− 4/3− 2ν. (4.36)

Finally, we need to compute the integral of the derivative squared in (iv). Note that
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for any α 6= 1/2∫ t

u
G′(s)2ds = α2A2

∫ t

u
(s+ 1)2α−2 =

α2A2

|2α− 1|
|(t+ 1)2α−1 − (u+ 1)2α−1|.

When α < 1/2 we have

lim
T→∞

sup
1≤i≤NT

∫ Ti

Ti−1

G′(s)2ds ≤ lim
T→∞

sup
1≤i≤NT

α2A2

|2α− 1|
· 2(Ti−1 + 1)2α−1

≤ lim
T→∞

α2A2

|2α− 1|
· 2(T0 + 1)2α−1 = 0,

and since δTT
1/3 ≥ δ2

TNT , where the latter tends to infinity by (i), then (iv) is proved.

The same argument works when α = 1/2, since for every i ∈ {1 . . . , NT }∫ Ti

Ti−1

G′(s)2ds = α2A2(log(Ti + 1)− log(Ti−1 + 1)) ≤ α2A2 log(T + 1)

and δTT
1/3 ≥ δ2

TNT = T 1/3−ν+2η, which tends to infinity as a power of T .

When α > 1/2 we have(
1 + Ti

)2α−1 −
(
1 + Ti−1

)2α−1
=
(
1 + T0 + i∆T

)2α−1 −
(
1 + T0 + (i− 1)∆T

)2α−1

�
(
i∆T

)2α−1 −
(
(i− 1)∆T

)2α−1

�
(
i∆T

)2α−1
(

1−
(

1− 1

i

)2α−1
)
� i2α−2∆2α−1

T ,

so ∫ Ti

Ti−1

G′(s)2ds =
α2A2

2α− 1

(
(1 + Ti)

2α−1 − (1 + Ti−1)2α−1
)
� i2α−2∆2α−1

T .

It follows that

1

δTT 1/3

∫ Ti

Ti−1

G′(s)2ds � T η−1/3 i2α−2T 4α/3−2/3+ν(2α−1) ≤ T 4α/3−1+ν(2α−1)+η,

and so (iv) requires that 4α/3− 1 + ν(2α− 1) + η < 0, that is

η < 1− 4α/3− ν(2α− 1). (4.37)

In order to show that the assumptions (i)-(iv) are fulfilled, we need to put together the

conditions (4.34)-(4.37), which give the system
η < 1/6− ν/2
η < 1/3− α/3− ε(1− α)

η > 2α− 4/3− 2ν

η < 1− 4α/3− ν(2α− 1).

It is easy to check that when α ∈ (0, 7/10], for every ν small enough and ε =

140



ν/(1− α) we have

2α− 4/3− 2ν < min{1/6− ν/2, 1/3− α/3, 1− 4α/3− ν(2α− 1)},

which means that it is possible to choose η such that the system has a solution, and

therefore the conditions (4.34)-(4.37) are satisfied. Indeed

• 2α− 4/3− 2ν < 1/6− ν/2 if and only if α < 3/4 + 3ν/2;

• 2α−4/3−2ν < 1/3−α/3−ε(1−α) if and only if α < 5/7+6ν/7−(3/7)ε(1−α).

If ε = ν/(1− α), this gives α < 5/7 + 3ν/7;

• 2α− 4/3− 2ν < 1− 4α/3− ν(2α− 1) if and only if α < 7/10 + (3/10)(3− 2α)ν.

Since 7/10 < 5/7 < 3/4, if ν is small enough then the most restrictive condition is

α < 7/10 + (3/10)(3− 2α)ν, which ultimately gives the upper bound α ≤ 7/10.
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