36 research outputs found
Recommended from our members
IDOL regulates systemic energy balance through control of neuronal VLDLR expression.
Liver X receptors limit cellular lipid uptake by stimulating the transcription of Inducible Degrader of the LDL Receptor (IDOL), an E3 ubiquitin ligase that targets lipoprotein receptors for degradation. The function of IDOL in systemic metabolism is incompletely understood. Here we show that loss of IDOL in mice protects against the development of diet-induced obesity and metabolic dysfunction by altering food intake and thermogenesis. Unexpectedly, analysis of tissue-specific knockout mice revealed that IDOL affects energy balance, not through its actions in peripheral metabolic tissues (liver, adipose, endothelium, intestine, skeletal muscle), but by controlling lipoprotein receptor abundance in neurons. Single-cell RNA sequencing of the hypothalamus demonstrated that IDOL deletion altered gene expression linked to control of metabolism. Finally, we identify VLDLR rather than LDLR as the primary mediator of IDOL effects on energy balance. These studies identify a role for the neuronal IDOL-VLDLR pathway in metabolic homeostasis and diet-induced obesity
THE ANALYSIS OF PUNCTUATION USE IN UNPUNCTUATED PASSAGES: A DISCOURSE-GRAPHOLOGY PERSPECTIVE
Diski Eginda Rismianti. 14111310149. The Analysis of Punctuation Use in Unpunctuated Passages: A Discourse-Graphology Perspective. Punctuation is the basic element in writing which is important to clarify meaning. Without punctuation or ignoring the rule of punctuation in a passage, the writing will be ambiguous. The writing course in IAIN Syekh Nurjati Cirebon is studied by English Student in 5 levels. Based the phenomenon, this research aims to find out the students’ error in the use of punctuation and how does the use relate to the meaning of restrictive and nonrestrictive elements. The analyses process in this research is constructed based on the theory from Marcella Frank. This research used qualitative method in analyzing data where the data contains the two original passages which is taken from the book of academic writing and the three participants’ work which are got by examining the passages as a main data source to be analyzed in this research. Those passages are changed be unpunctuated passages then examined to the 3 EFL learner which comes from the high score, medium score, and low score of writing. The result of this analysis shows that there are fifteen punctuation marks which are used in the two passages; they are capitalization, periods, commas, semicolons, colons, quotation marks, parentheses, apostrophes, hyphen, en dashes, ellipses, percent, underscore, at sign, and citation. FP has highest number of error in Capitalization with 100%. SP has big problem in commas exactly in the nineteenth rule with 90% and TP are wrong in parentheses. For restrictive and nonrestrictive elements, restrictive elements has higher number than nonrestrictive elements, except is in appositive. The numbers of the elements are same with the three participants. The differences come from the number of appositive which passages has higher number of nonrestrictive appositive than restrictive appositives. The results show that punctuation in unpunctuated passages used the rule from APA (American Psychological Association). The effects of the use of punctuation are in the number of sentences and clauses, types of phrases, and restrictive and nonrestrictive elements. For the students’ error, there are some sentences in FP and TP which only contain phrase. Key words: Punctuation Marks, Restrictive and Nonrestrictive Clause, Restrictive and Nonrestrictive Phrase, Restrictive and Nonrestrictive Appositives
The Pharmacogenomics of Bipolar Disorder study (PGBD): Identification of genes for lithium response in a prospective sample
Background: Bipolar disorder is a serious and common psychiatric disorder characterized by manic and depressive mood switches and a relapsing and remitting course. The cornerstone of clinical management is stabilization and prophylaxis using mood-stabilizing medications to reduce both manic and depressive symptoms. Lithium remains the gold standard of treatment with the strongest data for both efficacy and suicide prevention. However, many patients do not respond to this medication, and clinically there is a great need for tools to aid the clinician in selecting the correct treatment. Large genome wide association studies (GWAS) investigating retrospectively the effect of lithium response are in the pipeline; however, few large prospective studies on genetic predictors to of lithium response have yet been conducted. The purpose of this project is to identify genes that are associated with lithium response in a large prospective cohort of bipolar patients and to better understand the mechanism of action of lithium and the variation in the genome that influences clinical response. Methods/Design: This study is an 11-site prospective non-randomized open trial of lithium designed to ascertain a cohort of 700 subjects with bipolar I disorder who experience protocol-defined relapse prevention as a result of treatment with lithium monotherapy. All patients will be diagnosed using the Diagnostic Interview for Genetic Studies (DIGS) and will then enter a 2-year follow-up period on lithium monotherapy if and when they exhibit a score of 1 (normal, not ill), 2 (minimally ill) or 3 (mildly ill) on the Clinical Global Impressions of Severity Scale for Bipolar Disorder (CGI-S-BP Overall Bipolar Illness) for 4 of the 5 preceding weeks. Lithium will be titrated as clinically appropriate, not to exceed serum levels of 1.2 mEq/L. The sample will be evaluated longitudinally using a wide range of clinical scales, cognitive assessments and laboratory tests. On relapse, patients will be discontinued or crossed-over to treatment with valproic acid (VPA) or treatment as usual (TAU). Relapse is defined as a DSM-IV manic, major depressive or mixed episode or if the treating physician decides a change in medication is clinically necessary. The sample will be genotyped for GWAS. The outcome for lithium response will be analyzed as a time to event, where the event is defined as clinical relapse, using a Cox Proportional Hazards model. Positive single nucleotide polymorphisms (SNPs) from past genetic retrospective studies of lithium response, the Consortium on Lithium Genetics (ConLiGen), will be tested in this prospective study sample; a meta-analysis of these samples will then be performed. Finally, neurons will be derived from pluripotent stem cells from lithium responders and non-responders and tested in vivo for response to lithium by gene expression studies. SNPs in genes identified in these cellular studies will also be tested for association to response. Discussion: Lithium is an extraordinarily important therapeutic drug in the clinical management of patients suffering from bipolar disorder. However, a significant proportion of patients, 30–40 %, fail to respond, and there is currently no method to identify the good lithium responders before initiation of treatment. Converging evidence suggests that genetic factors play a strong role in the variation of response to lithium, but only a few genes have been tested and the samples have largely been retrospective or quite small. The current study will collect an entirely unique sample of 700 patients with bipolar disorder to be stabilized on lithium monotherapy and followed for up to 2 years. This study will produce useful information to improve the understanding of the mechanism of action of lithium and will add to the development of a method to predict individual response to lithium, thereby accelerating recovery and reducing suffering and cost.publishedVersio
The association between lithium use and neurocognitive performance in patients with bipolar disorder
Lithium remains the gold standard for the treatment of bipolar disorder (BD); however, its use has declined over the years mainly due to the side effects and the subjective experience of cognitive numbness reported by patients. In the present study, we aim to methodically test the effects of lithium on neurocognitive functioning in the largest single cohort (n = 262) of BD patients reported to date by harnessing the power of a multi-site, ongoing clinical trial of lithium monotherapy. At the cross-sectional level, multivariate analysis of covariance (MANCOVA) was conducted to examine potential group differences across neurocognitive tests [California Verbal Learning Test (CVLT trials 1–5,CVLT delayed recall), Wechsler Digit Symbol, Trail-making Test parts A and B (TMT-A; TMT-B), and a global cognition index]. At the longitudinal level, on a subset of patients (n = 88) who achieved mood stabilization with lithium monotherapy, we explored the effect of lithium treatment across time on neurocognitive functioning. There were no differences at baseline between BD patients that were taking lithium compared with those that were not. At follow-up a significant neurocognitive improvement in the global cognitive index score [F = 31.69; p < 0.001], CVLT trials 1–5 [F = 29.81; p < 0.001], CVLT delayed recall [F = 15.27; p < 0.001], and TMT-B [F = 6.64, p = 0.012] was detected. The cross-sectional and longitudinal (on a subset of 88 patients) investigations suggest that lithium may be beneficial to neurocognitive functioning in patients with BD and that at the very least it does not seem to significantly impair cognition when used therapeutically.acceptedVersio
Long-term lithium treatment in bipolar disorder: effects on glomerular filtration rate and other metabolic parameters
Background: Concerns about potential adverse effects of long-term exposure to lithium as a mood-stabilizing treatment notably include altered renal function. However, the incidence of severe renal dysfunction; rate of decline over time; effects of lithium dose, serum concentration, and duration of treatment; relative effects of lithium exposure vs. aging; and contributions of sex and other factors all remain unclear. Methods: Accordingly, we acquired data from 12 collaborating international sites and 312 bipolar disorder patients (6142 person-years, 2669 assays) treated with lithium carbonate for 8–48 (mean 18) years and aged 20–89 (mean 56) years. We evaluated changes of estimated glomerular filtration rate (eGFR) as well as serum creatinine, urea–nitrogen, and glucose concentrations, white blood cell count, and body-mass index, and tested associations of eGFR with selected factors, using standard bivariate contrasts and regression modeling. Results: Overall, 29.5% of subjects experienced at least one low value of eGFR ( 55; risk of ≥2 low values was 18.1%; none experienced end-stage renal failure. eGFR declined by 0.71%/year of age and 0.92%/year of treatment, both by 19% more among women than men. Mean serum creatinine increased from 0.87 to 1.17 mg/dL, BUN from 23.7 to 33.1 mg/dL, glucose from 88 to 122 mg/dL, and BMI from 25.9 to 26.6 kg/m2. By multivariate regression, risk factors for declining eGFR ranked: longer lithium treatment, lower lithium dose, higher serum lithium concentration, older age, and medical comorbidity. Later low eGFR was also predicted by lower initial eGFR, and starting lithium at age ≥ 40 years. Limitations Control data for age-matched subjects not exposed to lithium were lacking. Conclusions: Long-term lithium treatment was associated with gradual decline of renal functioning (eGFR) by about 30% more than that was associated with aging alone. Risk of subnormal eGFR was from 18.1% (≥2 low values) to 29.5% (≥1 low value), requiring about 30 years of exposure. Additional risk factors for low eGFR were higher serum lithium level, longer lithium treatment, lower initial eGFR, and medical comorbidity, as well as older age
Focal adhesion is associated with lithium response in bipolar disorder: evidence from a network-based multi-omics analysis
Lithium (Li) is one of the most effective drugs for treating bipolar disorder (BD), however, there is presently no way to predict response to guide treatment. The aim of this study is to identify functional genes and pathways that distinguish BD Li responders (LR) from BD Li non-responders (NR). An initial Pharmacogenomics of Bipolar Disorder study (PGBD) GWAS of lithium response did not provide any significant results. As a result, we then employed network-based integrative analysis of transcriptomic and genomic data. In transcriptomic study of iPSC-derived neurons, 41 significantly differentially expressed (DE) genes were identified in LR vs NR regardless of lithium exposure. In the PGBD, post-GWAS gene prioritization using the GWA-boosting (GWAB) approach identified 1119 candidate genes. Following DE-derived network propagation, there was a highly significant overlap of genes between the top 500- and top 2000-proximal gene networks and the GWAB gene list (Phypergeometric = 1.28E–09 and 4.10E–18, respectively). Functional enrichment analyses of the top 500 proximal network genes identified focal adhesion and the extracellular matrix (ECM) as the most significant functions. Our findings suggest that the difference between LR and NR was a much greater effect than that of lithium. The direct impact of dysregulation of focal adhesion on axon guidance and neuronal circuits could underpin mechanisms of response to lithium, as well as underlying BD. It also highlights the power of integrative multi-omics analysis of transcriptomic and genomic profiling to gain molecular insights into lithium response in BD.publishedVersio