2,293 research outputs found
Joint Elastic Side-Scattering Lidar and Raman Lidar Measurements of Aerosol Optical Properties in South East Colorado
We describe an experiment, located in south-east Colorado, USA, that measured
aerosol optical depth profiles using two Lidar techniques. Two independent
detectors measured scattered light from a vertical UV laser beam. One detector,
located at the laser site, measured light via the inelastic Raman
backscattering process. This is a common method used in atmospheric science for
measuring aerosol optical depth profiles. The other detector, located
approximately 40km distant, viewed the laser beam from the side. This detector
featured a 3.5m2 mirror and measured elastically scattered light in a bistatic
Lidar configuration following the method used at the Pierre Auger cosmic ray
observatory. The goal of this experiment was to assess and improve methods to
measure atmospheric clarity, specifically aerosol optical depth profiles, for
cosmic ray UV fluorescence detectors that use the atmosphere as a giant
calorimeter. The experiment collected data from September 2010 to July 2011
under varying conditions of aerosol loading. We describe the instruments and
techniques and compare the aerosol optical depth profiles measured by the Raman
and bistatic Lidar detectors.Comment: 34 pages, 16 figure
High-resolution microwave frequency dissemination on an 86-km urban optical link
We report the first demonstration of a long-distance ultra stable frequency
dissemination in the microwave range. A 9.15 GHz signal is transferred through
a 86-km urban optical link with a fractional frequency stability of 1.3x10-15
at 1 s integration time and below 10-18 at one day. The optical link phase
noise compensation is performed with a round-trip method. To achieve such a
result we implement light polarisation scrambling and dispersion compensation.
This link outperforms all the previous radiofrequency links and compares well
with recently demonstrated full optical links.Comment: 11 pages, 5 figure
If players are sparse social dilemmas are too: Importance of percolation for evolution of cooperation
Spatial reciprocity is a well known tour de force of cooperation promotion. A
thorough understanding of the effects of different population densities is
therefore crucial. Here we study the evolution of cooperation in social
dilemmas on different interaction graphs with a certain fraction of vacant
nodes. We find that sparsity may favor the resolution of social dilemmas,
especially if the population density is close to the percolation threshold of
the underlying graph. Regardless of the type of the governing social dilemma as
well as particularities of the interaction graph, we show that under pairwise
imitation the percolation threshold is a universal indicator of how dense the
occupancy ought to be for cooperation to be optimally promoted. We also
demonstrate that myopic updating, due to the lack of efficient spread of
information via imitation, renders the reported mechanism dysfunctional, which
in turn further strengthens its foundations.Comment: 6 two-column pages, 5 figures; accepted for publication in Scientific
Reports [related work available at http://arxiv.org/abs/1205.0541
Non drowsy obstructive sleep apnea as a potential cause of resistant hypertension: a case report
<p>Abstract</p> <p>Background</p> <p>Obstructive sleep apnea (OSA) and arterial hypertension (AH) are common and underrecognized medical disorders. OSA is a potential risk factor for the development of AH and/or may act as a factor complicating AH management. The symptoms of excessive daytime sleepiness (EDS) are considered essential for the initiation of continuous positive airway pressure (CPAP) therapy, which is a first line treatment of OSA. The medical literature and practice is controversial about the treatment of people with asymptomatic OSA. Thus, OSA patients without EDS may be left at increased cardiovascular risk.</p> <p>Case presentation</p> <p>The report presents a case of 42year old Asian woman with symptoms of heart failure and angina like chest pain upon admission. She didnt experience symptoms of EDS, and the Epworth Sleepiness Scale was seven points. Snoring was reported on direct questioning. The patient had prior medical history of three unsuccessful pregnancies complicated by gestational AH and preeclampsia with C-section during the last pregnancy. The admission blood pressure (BP) was 200/120mm Hg. The patients treatment regimen consisted of five hypotensive medications including diuretic. However, a target BP wasnt achieved in about one and half month. The patient was offered to undergo a polysomnography (PSG) study, which she rejected. One month after discharge the PSG study was done, and this showed an apnea-hypopnea index (AHI) of 46 events per hour. CPAP therapy was initiated with a pressure of 11H<sub>2</sub>0cm. After 2months of compliant CPAP use, adherence to pharmacologic regimen and lifestyle modifications the patients BP decreased to 134/82mm Hg.</p> <p>Conclusions</p> <p>OSA and AH are common and often underdiagnosed medical disorders independently imposing excessive cardiovascular risk on a diseased subject. When two conditions coexist the cardiovascular risk is likely much greater. This case highlights a possible clinical phenotype of OSA without EDS and its association with resistant AH. Most importantly a good hypotensive response to medical treatment in tandem with CPAP therapy was achieved in this patient. Thus, it is reasonable to include OSA in the differential list of resistant AH, even if EDS is not clinically obvious.</p
Investigating human audio-visual object perception with a combination of hypothesis-generating and hypothesis-testing fMRI analysis tools
Primate multisensory object perception involves distributed brain regions. To investigate the network character of these regions of the human brain, we applied data-driven group spatial independent component analysis (ICA) to a functional magnetic resonance imaging (fMRI) data set acquired during a passive audio-visual (AV) experiment with common object stimuli. We labeled three group-level independent component (IC) maps as auditory (A), visual (V), and AV, based on their spatial layouts and activation time courses. The overlap between these IC maps served as definition of a distributed network of multisensory candidate regions including superior temporal, ventral occipito-temporal, posterior parietal and prefrontal regions. During an independent second fMRI experiment, we explicitly tested their involvement in AV integration. Activations in nine out of these twelve regions met the max-criterion (A < AV > V) for multisensory integration. Comparison of this approach with a general linear model-based region-of-interest definition revealed its complementary value for multisensory neuroimaging. In conclusion, we estimated functional networks of uni- and multisensory functional connectivity from one dataset and validated their functional roles in an independent dataset. These findings demonstrate the particular value of ICA for multisensory neuroimaging research and using independent datasets to test hypotheses generated from a data-driven analysis
Enhanced dynamic functional connectivity (whole-brain chronnectome) in chess experts
Multidisciplinary approaches have demonstrated that the brain is potentially modulated by the long-term acquisition and practice of specific skills. Chess playing can be considered a paradigm for shaping brain function, with complex interactions among brain networks possibly enhancing cognitive processing. Dynamic network analysis based on resting-state magnetic resonance imaging (rs-fMRI) can be useful to explore the effect of chess playing on whole-brain fluidity/dynamism (the chronnectome). Dynamic connectivity parameters of 18 professional chess players and 20 beginner chess players were evaluated applying spatial independent component analysis (sICA), sliding-time window correlation, and meta-state approaches to rs-fMRI data. Four indexes of meta-state dynamic fluidity were studied: i) the number of distinct meta-states a subject pass through, ii) the number of switches from one meta-state to another, iii) the span of the realized meta-states (the largest distance between two meta-states that subjects occupied), and iv) the total distance travelled in the state space. Professional chess players exhibited an increased dynamic fluidity, expressed as a higher number of occupied meta-states (meta-state numbers, 75.8 ± 7.9 vs 68.8 ± 12.0, p = 0.043 FDR-corrected) and changes from one meta-state to another (meta-state changes, 77.1 ± 7.3 vs 71.2 ± 11.0, p = 0.043 FDR-corrected) than beginner chess players. Furthermore, professional chess players exhibited an increased dynamic range, with increased traveling between successive meta-states (meta-state total distance, 131.7 ± 17.8 vs 108.7 ± 19.7, p = 0.0004 FDR-corrected). Chess playing may induce changes in brain activity through the modulation of the chronnectome. Future studies are warranted to evaluate if these potential effects lead to enhanced cognitive processing and if "gaming" might be used as a treatment in clinical practice
Multiscale photosynthetic exciton transfer
Photosynthetic light harvesting provides a natural blueprint for
bioengineered and biomimetic solar energy and light detection technologies.
Recent evidence suggests some individual light harvesting protein complexes
(LHCs) and LHC subunits efficiently transfer excitons towards chemical reaction
centers (RCs) via an interplay between excitonic quantum coherence, resonant
protein vibrations, and thermal decoherence. The role of coherence in vivo is
unclear however, where excitons are transferred through multi-LHC/RC aggregates
over distances typically large compared with intra-LHC scales. Here we assess
the possibility of long-range coherent transfer in a simple chromophore network
with disordered site and transfer coupling energies. Through renormalization we
find that, surprisingly, decoherence is diminished at larger scales, and
long-range coherence is facilitated by chromophoric clustering. Conversely,
static disorder in the site energies grows with length scale, forcing
localization. Our results suggest sustained coherent exciton transfer may be
possible over distances large compared with nearest-neighbour (n-n) chromophore
separations, at physiological temperatures, in a clustered network with small
static disorder. This may support findings suggesting long-range coherence in
algal chloroplasts, and provides a framework for engineering large chromophore
or quantum dot high-temperature exciton transfer networks.Comment: 9 pages, 6 figures. A significantly updated version is now published
online by Nature Physics (2012
Actors and networks or agents and structures: towards a realist view of information systems
Actor-network theory (ANT) has achieved a measure of popularity in the analysis of information systems. This paper looks at ANT from the perspective of the social realism of Margaret Archer. It argues that the main issue with ANT from a realist perspective is its adoption of a `flat' ontology, particularly with regard to human beings. It explores the value of incorporating concepts from ANT into a social realist approach, but argues that the latter offers a more productive way of approaching information systems
- …