2,695 research outputs found

    Isolation of a cDNA clone for the human lysosomal proteinase cathepsin B.

    Full text link

    An ICA with reference approach in identification of genetic variation and associated brain networks

    Get PDF
    To address the statistical challenges associated with genome-wide association studies, we present an independent component analysis (ICA) with reference approach to target a specific genetic variation and associated brain networks. First, a small set of single nucleotide polymorphisms (SNPs) are empirically chosen to reflect a feature of interest and these SNPs are used as a reference when applying ICA to a full genomic SNP array. After extracting the genetic component maximally representing the characteristics of the reference, we test its association with brain networks in functional magnetic resonance imaging (fMRI) data. The method was evaluated on both real and simulated datasets. Simulation demonstrates that ICA with reference can extract a specific genetic factor, even when the variance accounted for by such a factor is so small that a regular ICA fails. Our real data application from 48 schizophrenia patients (SZs) and 40 healthy controls (HCs) include 300K SNPs and fMRI images in an auditory oddball task. Using SNPs with allelic frequency difference in two groups as a reference, we extracted a genetic component that maximally differentiates patients from controls (p < 4 × 10−17), and discovered a brain functional network that was significantly associated with this genetic component (p < 1 × 10−4). The regions in the functional network mainly locate in the thalamus, anterior and posterior cingulate gyri. The contributing SNPs in the genetic factor mainly fall into two clusters centered at chromosome 7q21 and chromosome 5q35. The findings from the schizophrenia application are in concordance with previous knowledge about brain regions and gene function. All together, the results suggest that the ICA with reference can be particularly useful to explore the whole genome to find a specific factor of interest and further study its effect on brain

    Whole MILC: generalizing learned dynamics across tasks, datasets, and populations

    Full text link
    Behavioral changes are the earliest signs of a mental disorder, but arguably, the dynamics of brain function gets affected even earlier. Subsequently, spatio-temporal structure of disorder-specific dynamics is crucial for early diagnosis and understanding the disorder mechanism. A common way of learning discriminatory features relies on training a classifier and evaluating feature importance. Classical classifiers, based on handcrafted features are quite powerful, but suffer the curse of dimensionality when applied to large input dimensions of spatio-temporal data. Deep learning algorithms could handle the problem and a model introspection could highlight discriminatory spatio-temporal regions but need way more samples to train. In this paper we present a novel self supervised training schema which reinforces whole sequence mutual information local to context (whole MILC). We pre-train the whole MILC model on unlabeled and unrelated healthy control data. We test our model on three different disorders (i) Schizophrenia (ii) Autism and (iii) Alzheimers and four different studies. Our algorithm outperforms existing self-supervised pre-training methods and provides competitive classification results to classical machine learning algorithms. Importantly, whole MILC enables attribution of subject diagnosis to specific spatio-temporal regions in the fMRI signal.Comment: Accepted at MICCAI 2020. arXiv admin note: substantial text overlap with arXiv:1912.0313

    Money Minute: Using short informational videos during COVID-19

    Get PDF
    The COVID-19 pandemic has created a money crunch for some families. To help families struggling financially while capitalizing on at-home time, The University of Tennessee (UT) Extension consumer economics leadership team developed a series of money management videos called Money Minute. The primary purpose of the videos was to provide research-based financial education during this time of financial hardships. Filmed using Zoom, each video offers a piece of research-based information, additional resources, and a call to action. The video series proved to be effective in reaching clientele with financial information in the midst of a pandemic

    Improving the power-delay performance in subthreshold source-coupled logic circuits

    Get PDF
    Subthreshold source-coupled logic (STSCL) circuits can be used in design of low-voltage and ultra-low power digital systems. This article introduces and analyzes new techniques for implementing complex digital systems using STSCL gates with an improved power-delay product (PDP) based on source-follower output stages. A test chip has been manufactured in a conventional digital 0.18μ\mum CMOS technology to evaluate the performance of the proposed STSCL circuit, and speed and PDP improvements by a factor of up to 2.4 were demonstrated

    Correction Technique for Raman Water Vapor Lidar Signal-Dependent Bias and Suitability for Water Wapor Trend Monitoring in the Upper Troposphere

    Get PDF
    The MOHAVE-2009 campaign brought together diverse instrumentation for measuring atmospheric water vapor. We report on the participation of the ALVICE (Atmospheric Laboratory for Validation, Interagency Collaboration and Education) mobile laboratory in the MOHAVE-2009 campaign. In appendices we also report on the performance of the corrected Vaisala RS92 radiosonde measurements during the campaign, on a new radiosonde based calibration algorithm that reduces the influence of atmospheric variability on the derived calibration constant, and on other results of the ALVICE deployment. The MOHAVE-2009 campaign permitted the Raman lidar systems participating to discover and address measurement biases in the upper troposphere and lower stratosphere. The ALVICE lidar system was found to possess a wet bias which was attributed to fluorescence of insect material that was deposited on the telescope early in the mission. Other sources of wet biases are discussed and data from other Raman lidar systems are investigated, revealing that wet biases in upper tropospheric (UT) and lower stratospheric (LS) water vapor measurements appear to be quite common in Raman lidar systems. Lower stratospheric climatology of water vapor is investigated both as a means to check for the existence of these wet biases in Raman lidar data and as a source of correction for the bias. A correction technique is derived and applied to the ALVICE lidar water vapor profiles. Good agreement is found between corrected ALVICE lidar measurments and those of RS92, frost point hygrometer and total column water. The correction is offered as a general method to both quality control Raman water vapor lidar data and to correct those data that have signal-dependent bias. The influence of the correction is shown to be small at regions in the upper troposphere where recent work indicates detection of trends in atmospheric water vapor may be most robust. The correction shown here holds promise for permitting useful upper tropospheric water vapor profiles to be consistently measured by Raman lidar within NDACC (Network for the Detection of Atmospheric Composition Change) and elsewhere, despite the prevalence of instrumental and atmospheric effects that can contaminate the very low signal to noise measurements in the UT

    Phase Structures and Morphologies Determined by Competitions Among Self-Organization, Crystallization, and Vitrification in a Disordered Poly(Ethylene Oxide)-B-Polystyrene Diblock Copolymer

    Get PDF
    A poly(ethylene oxide)-b-polystyrene (PEO-b-PS) diblock copolymer having a number-average molecular weight ((M) over bar(n)) of 11000 g/mol in the PEO blocks and an (M) over bar(n) of 5200 g/mol in the PS blocks has been synthesized (with a volume fraction of the PEO blocks of 0.66 in the molten state). Differential scanning calorimetry results show that this copolymer possesses a single endotherm, which is attributed to the melting of the PEG-block crystals. Based on real-time resolved synchrotron small-angle x-ray scattering (SAXS) observations, the diblock copolymer is in a disordered state above the glass transition temperature of the PS-rich phase (T-g(PS)) which has been determined to be 44.0 degrees C during cooling using dilatometer mode in thermomechanical measurements. The order-disorder transition temperature (T-ODT) for this diblock copolymer is thus experimentally inaccessible. Depending upon different isothermal crystallization temperatures quenched from the disordered state (T(q)s), four cases can be investigated in order to understand the phase relationships among self-organization, crystallization of the PEO blocks, and vitrification of the PS-rich phase: the region where the T-q is above the T-g(PS), the regions where the T-q is near but slightly higher or lower than the T-g(PS) ; and the region where the T-q is below the T-g(PS) . Utilizing simultaneous SPXS and wide angle x-ray-diffraction experiments, it can be seen that lamellar crystals of the PEO blocks in the first case grow with little morphological constraint due to initial disordered phase morphology. As the T-q approaches but is still slightly higher than the T-g(PS) , as in the second case, the PEG-block crystals with a greater long period (L) than that of the disordered state start to grow. The initial disordered phase morphology is gradually destroyed, at least to a major extent. When the T-q is near but slightly lower than the T-g(PS), the crystallization takes place largely within the existing phase morphology. Only a gradual shift of the L towards smaller q values can be found with increasing time, which implies that the initial phase morphology is disturbed by the crystallization of the PEO blocks. In the last case, the PEO blocks crystallize under a total constraint provided by the disordered phase morphology due to rapid vitrification of the PS-rich phase. Substantial decrease of crystallinity can be observed in this case. This study also provides experimental evidence that the PS-rich phase size, which is down to 7-8 nm, can still retain bulky glassy properties. [S0163-1829(99)01138-8]

    High-resolution microwave frequency dissemination on an 86-km urban optical link

    Full text link
    We report the first demonstration of a long-distance ultra stable frequency dissemination in the microwave range. A 9.15 GHz signal is transferred through a 86-km urban optical link with a fractional frequency stability of 1.3x10-15 at 1 s integration time and below 10-18 at one day. The optical link phase noise compensation is performed with a round-trip method. To achieve such a result we implement light polarisation scrambling and dispersion compensation. This link outperforms all the previous radiofrequency links and compares well with recently demonstrated full optical links.Comment: 11 pages, 5 figure
    corecore