4 research outputs found

    Surface rupture of multiple crustal faults in the 2016 Mw 7.8 Kaikōura, New Zealand, earthquake

    Get PDF
    Multiple (>20 >20 ) crustal faults ruptured to the ground surface and seafloor in the 14 November 2016 M w Mw 7.8 Kaikōura earthquake, and many have been documented in detail, providing an opportunity to understand the factors controlling multifault ruptures, including the role of the subduction interface. We present a summary of the surface ruptures, as well as previous knowledge including paleoseismic data, and use these data and a 3D geological model to calculate cumulative geological moment magnitudes (M G w MwG ) and seismic moments for comparison with those from geophysical datasets. The earthquake ruptured faults with a wide range of orientations, sense of movement, slip rates, and recurrence intervals, and crossed a tectonic domain boundary, the Hope fault. The maximum net surface displacement was ∼12  m ∼12  m on the Kekerengu and the Papatea faults, and average displacements for the major faults were 0.7–1.5 m south of the Hope fault, and 5.5–6.4 m to the north. M G w MwG using two different methods are M G w MwG 7.7 +0.3 −0.2 7.7−0.2+0.3 and the seismic moment is 33%–67% of geophysical datasets. However, these are minimum values and a best estimate M G w MwG incorporating probable larger slip at depth, a 20 km seismogenic depth, and likely listric geometry is M G w MwG 7.8±0.2 7.8±0.2 , suggests ≤32% ≤32% of the moment may be attributed to slip on the subduction interface and/or a midcrustal detachment. Likely factors contributing to multifault rupture in the Kaikōura earthquake include (1) the presence of the subduction interface, (2) physical linkages between faults, (3) rupture of geologically immature faults in the south, and (4) inherited geological structure. The estimated recurrence interval for the Kaikōura earthquake is ≥5,000–10,000  yrs ≥5,000–10,000  yrs , and so it is a relatively rare event. Nevertheless, these findings support the need for continued advances in seismic hazard modeling to ensure that they incorporate multifault ruptures that cross tectonic domain boundaries

    Coseismic Rupture and Preliminary Slip Estimates for the Papatea Fault and Its Role in the 2016 Mw 7.8 Kaikōura, New Zealand, Earthquake

    No full text
    International audienceCoseismic rupture of the 19‐km‐long north‐striking and west‐dipping sinistral reverse Papatea fault and nearby structures and uplift/translation of the Papatea block are two of the exceptional components of the 14 November 2016 Mw 7.8 Kaikōura earthquake. The dual‐stranded Papatea fault, comprising main (sinistral reverse) and western (dip‐slip) strands, ruptured onshore and offshore from south of Waipapa Bay to George Stream in the north, bounding the eastern side of the Papatea block. Fault rupture mapping was aided by the acquisition of multibeam bathymetry, light detection and ranging (lidar) topography and other imagery, as well as differential lidar (D‐lidar) from along the coast and Clarence River valley. On land, vertical throw and sinistral offset on the Papatea fault was assessed across an aperture of ±100  m using uncorrected D‐lidar and field data to develop preliminary slip distributions. The maximum up‐to‐the‐west throw on the main strand is ∼9.5±0.5  m⁠, and the mean throw across the Papatea fault is ∼4.5±0.3  m⁠. The maximum sinistral offset, measured near the coast on the main strand, is ∼6.1±0.5  m⁠. From these data, and considering fault dip, we calculate a maximum net slip of 11.5±2  m and an average net slip of 6.4±0.2  m for the Papatea fault surface rupture in 2016. Large sinistral reverse displacement on the Papatea fault is consistent with uplift and southward escape of the Papatea block as observed from Interferometric Synthetic Aperture Radar (InSAR) and optical image correlation datasets. The throw and net slip are exceedingly high for the length of the Papatea fault; such large movements likely only occur during multifault Kaikōura‐type earthquakes that conceivably have recurrence times of ≥5000–12,000  yrs⁠. The role of the Papatea fault in the Kaikōura earthquake has significant implications for characterizing complex fault sources in seismic hazard models

    The Mw7.8 2016 Kaikoura earthquake: surface fault rupture and seismic hazard context

    No full text
    We provide a summary of the surface fault ruptures produced by the Mw7.8 14 November 2016 Kaikōura earthquake, including examples of damage to engineered structures, transportation networks and farming infrastructure produced by direct fault surface rupture displacement. We also provide an overview of the earthquake in the context of the earthquake source model and estimated ground motions from the current (2010) version of the National Seismic Hazard Model (NSHM) for New Zealand. A total of 21 faults ruptured along a c.180 km long zone during the earthquake, including some that were unknown prior to the event. The 2010 version of the NSHM had considered multi-fault ruptures in the Kaikōura area, but not to the degree observed in the earthquake. The number of faults involved a combination of known and unknown faults, a mix of complete and partial ruptures of the known faults, and the non-involvement of a major fault within the rupture zone (i.e. the Hope Fault) makes this rupture an unusually complex event by world standards. However, the strong ground motions of the earthquake are consistent with the high hazard of the Kaikōura area shown in maps produced from the NSHM

    Surface Rupture of Multiple Crustal Faults in the 2016 Mw 7.8 Kaikōura, New Zealand, Earthquake

    No full text
    corecore