71 research outputs found
A Second Giant Planet in 3:2 Mean-Motion Resonance in the HD 204313 System
We present 8 years of high-precision radial velocity (RV) data for HD 204313
from the 2.7 m Harlan J. Smith Telescope at McDonald Observatory. The star is
known to have a giant planet (M sin i = 3.5 M_J) on a ~1900-day orbit, and a
Neptune-mass planet at 0.2 AU. Using our own data in combination with the
published CORALIE RVs of Segransan et al. (2010), we discover an outer Jovian
(M sin i = 1.6 M_J) planet with P ~ 2800 days. Our orbital fit suggests the
planets are in a 3:2 mean motion resonance, which would potentially affect
their stability. We perform a detailed stability analysis, and verify the
planets must be in resonance.Comment: Accepted for publication in Ap
The McDonald Observatory Planet Search: New Long-Period Giant Planets, and Two Interacting Jupiters in the HD 155358 System
We present high-precision radial velocity (RV) observations of four
solar-type (F7-G5) stars - HD 79498, HD 155358, HD 197037, and HD 220773 -
taken as part of the McDonald Observatory Planet Search Program. For each of
these stars, we see evidence of Keplerian motion caused by the presence of one
or more gas giant planets in long-period orbits. We derive orbital parameters
for each system, and note the properties (composition, activity, etc.) of the
host stars. While we have previously announced the two-gas-giant HD 155358
system, we now report a shorter period for planet c. This new period is
consistent with the planets being trapped in mutual 2:1 mean-motion resonance.
We therefore perform an in-depth stability analysis, placing additional
constraints on the orbital parameters of the planets. These results demonstrate
the excellent long-term RV stability of the spectrometers on both the Harlan J.
Smith 2.7 m telescope and the Hobby-Eberly telescope.Comment: 38 pages, 10 figures, 6 tables. Accepted for publication in Ap
Two New Long-Period Giant Planets from the McDonald Observatory Planet Search and Two Stars with Long-Period Radial Velocity Signals Related to Stellar Activity Cycles
We report the detection of two new long-period giant planets orbiting the stars HD 95872 and HD 162004 (ψ^1 Dra B) by the McDonald Observatory planet search. The planet HD 95872b has a minimum mass of 4.6 M_(Jup) and an orbital semimajor axis of 5.2 AU. The giant planet ψ^1 Dra Bb has a minimum mass of 1.5 M_(Jup) and an orbital semimajor axis of 4.4 AU. Both of these planets qualify as Jupiter analogs. These results are based on over one and a half decades of precise radial velocity (RV) measurements collected by our program using the McDonald Observatory Tull Coude spectrograph at the 2.7 m Harlan J. Smith Telescope. In the case of ψ^1 Dra B we also detect a long-term nonlinear trend in our data that indicates the presence of an additional giant planet, similar to the Jupiter–Saturn pair. The primary of the binary star system, ψ^1 Dra A, exhibits a very large amplitude RV variation due to another stellar companion. We detect this additional member using speckle imaging. We also report two cases—HD 10086 and HD 102870 (β Virginis)—of significant RV variation consistent with the presence of a planet, but that are probably caused by stellar activity, rather than reflexive Keplerian motion. These two cases stress the importance of monitoring the magnetic activity level of a target star, as long-term activity cycles can mimic the presence of a Jupiter-analog planet
The impact from survey depth and resolution on the morphological classification of galaxies
We consistently analyse for the first time the impact of survey depth and spatial resolution on the most used morphological parameters for classifying galaxies through non-parametric methods: Abraham and Conselice-Bershady concentration indices, Gini, M20moment of light, asymmetry, and smoothness. Three different non-local data sets are used, Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) and Subaru/XMMNewton Deep Survey (SXDS, examples of deep ground-based surveys), and Cosmos Evolution Survey (COSMOS, deep space-based survey). We used a sample of 3000 local, visually classified galaxies, measuring their morphological parameters at their real redshifts (z ~ 0). Then we simulated them to match the redshift and magnitude distributions of galaxies in the non-local surveys. The comparisons of the two sets allow us to put constraints on the use of each parameter for morphological classification and evaluate the effectiveness of the commonly used morphological diagnostic diagrams. All analysed parameters suffer from biases related to spatial resolution and depth, the impact of the former being much stronger. When including asymmetry and smoothness in classification diagrams, the noise effects must be taken into account carefully, especially for ground-based surveys. M20 is significantly affected, changing both the shape and range of its distribution at all brightness levels. We suggest that diagnostic diagrams based on 2-3 parameters should be avoided when classifying galaxies in ground-based surveys, independently of their brightness; for COSMOS they should be avoided for galaxies fainter than F814 = 23.0. These results can be applied directly to surveys similar to ALHAMBRA, SXDS and COSMOS, and also can serve as an upper/lower limit for shallower/deeper ones.Ministerio de Economía y Competitividad AYA2010-15169, AYA2013-42227-P, AYA2013-4318
The First Habitable Zone Earth-Sized Planet From TESS II: Spitzer Confirms TOI-700 d
We present Spitzer 4.5 μm observations of the transit of TOI-700 d, a habitable-zone Earth-sized planet in a multiplanet system transiting a nearby M-dwarf star (TIC 150428135, 2MASS J06282325–6534456). TOI-700 d has a radius of 1.144^(+0.062)_(-0.061) R⊕ and orbits within its host star's conservative habitable zone with a period of 37.42 days (T_(eq) ~ 269 K). TOI-700 also hosts two small inner planets (R_b = 1.037^(+0.0065)_(-0.064) R⊕ and R_c = 2.65^(+0.16)_(-0.15) R⊕) with periods of 9.98 and 16.05 days, respectively. Our Spitzer observations confirm the Transiting Exoplanet Survey Satellite (TESS) detection of TOI-700 d and remove any remaining doubt that it is a genuine planet. We analyze the Spitzer light curve combined with the 11 sectors of TESS observations and a transit of TOI-700 c from the LCOGT network to determine the full system parameters. Although studying the atmosphere of TOI-700 d is not likely feasible with upcoming facilities, it may be possible to measure the mass of TOI-700 d using state-of-the-art radial velocity (RV) instruments (expected RV semiamplitude of ~70 cm s⁻¹)
The Ariel payload design post-PDR
The Ariel space mission will characterize spectroscopically the atmospheres of a large and diverse sample of hundreds of exoplanets. Through the study of targets with a wide range of planetary parameters (mass, density, equilibrium temperature) and host star types the origin for the diversity observed in known exoplanets will be better understood. Ariel is an ESA Medium class science mission (M4) with a spacecraft bus developed by industry under contract to ESA, and a Payload provided by a consortium of national funding agencies in ESA member states, plus contributions from NASA, the CSA and JAXA. The payload is based on a 1-meter class telescope operated at below 60K, built all in Aluminium, which feeds two science instruments. A multi-channel photometer and low-resolution spectrometer instrument (the FGS, Fine Guidance System instrument) operating from 0.5 – 1.95 microns in wavelength provides both guidance information for stabilizing the spacecraft pointing as well as vital scientific information from spectroscopy in the near-infrared and photometry in the visible channels. The Ariel InfraRed Spectrometer (AIRS) instrument provides medium resolution spectroscopy from 1.95 – 7.8 microns wavelength coverage over two instrument channels. Supporting subsystems provide the necessary mechanical, thermal and electronics support to the cryogenic payload. This paper presents the overall picture of the payload for the Ariel mission. The payload tightly integrates the design and analysis of the various payload elements (including for example the integrated STOP analysis of the Telescope and Common Optics) in order to allow the exacting photometric stability requirements for the mission to be met. The Ariel payload has passed through the Preliminary Design Review (completed in Q2 2023) and is now developing and building prototype models of the Telescope, Instruments and Subsystems (details of which will be provided in other contributions to this conference). This paper will present the current status of the development work and outline the future plans to complete the build and verification of the integrated payload
Black holes on thick branes
The interplay between topological defects (branes) and black holes has been a
subject of recent study, motivated in part by interest in brane-world
scenarios. In this paper we analyze in detail the description of a black hole
bound to a domain wall (a two-brane in four dimensions), for which an exact
description in the limit of zero wall thickness has been given recently. We
show how to smooth this singular solution with a thick domain wall. We also
show that charged extremal black holes of a size (roughly) smaller than the
brane thickness expel the wall, thereby extending the phenomenon of flux
expulsion. Finally, we analyze the process of black hole nucleation {\it on} a
domain wall, and argue that it is preferred over a previously studied mechanism
of black hole nucleation {\it away} from the wall.Comment: 22 pages revtex, 4 figures, comments adde
A thematic analysis of factors influencing recruitment to maternal and perinatal trials
Background: Recruitment of eligible participants remains one of the biggest challenges to successful completion of randomised controlled trials (RCTs). Only one third of trials recruit on time, often requiring a lengthy extension to the recruitment period. We identified factors influencing recruitment success and potentially effective recruitment strategies. Methods: We searched MEDLINE and EMBASE from 1966 to December Week 2, 2006, the Cochrane Library Methodology Register in December 2006, and hand searched reference lists for studies of any design which focused on recruitment to maternal/perinatal trials, or if no studies of maternal or perinatal research could be identified, other areas of healthcare. Studies of nurses' and midwives' attitudes to research were included as none specifically about trials were located. We synthesised the data narratively, using a basic thematic analysis, with themes derived from the literature and after discussion between the authors. Results: Around half of the included papers (29/53) were specific to maternal and perinatal healthcare. Only one study was identified which focused on factors for maternal and perinatal clinicians and only seven studies considered recruitment strategies specific to perinatal research. Themes included: participant assessment of risk; recruitment process; participant understanding of research; patient characteristics; clinician attitudes to research and trials; protocol issues; and institutional or organisational issues. While no reliable evidence base for strategies to enhance recruitment was identified in any of the review studies, four maternal/perinatal primary studies suggest that specialised recruitment staff, mass mailings, physician referrals and strategies targeting minority women may increase recruitment. However these findings may only be applicable to the particular trials and settings studied. Conclusion: Although factors reported by both participants and clinicians which influence recruitment were quite consistent across the included studies, studies comparing different recruitment strategies were largely missing. Trials of different recruitment strategies could be embedded in large multicentre RCTs, with strategies tailored to the factors specific to the trial and institution.Rebecca L Tooher, Philippa F Middleton and Caroline A Crowthe
Selective Uncoupling of Individual Mitochondria within a Cell Using a Mitochondria-Targeted Photoactivated Protonophore
Depolarization of an individual mitochondrion or small clusters of mitochondria within cells has been achieved using a photoactivatable probe. The probe is targeted to the matrix of the mitochondrion by an alkyltriphenylphosphonium lipophilic cation and releases the protonophore 2,4-dinitrophenol locally in predetermined regions in response to directed irradiation with UV light via a local photolysis system. This also provides a proof of principle for the general temporally and spatially controlled release of bioactive molecules, pharmacophores, or toxins to mitochondria with tissue, cell, or mitochondrion specificity
A Giant Planet Candidate Transiting a White Dwarf
Astronomers have discovered thousands of planets outside the solar system,
most of which orbit stars that will eventually evolve into red giants and then
into white dwarfs. During the red giant phase, any close-orbiting planets will
be engulfed by the star, but more distant planets can survive this phase and
remain in orbit around the white dwarf. Some white dwarfs show evidence for
rocky material floating in their atmospheres, in warm debris disks, or orbiting
very closely, which has been interpreted as the debris of rocky planets that
were scattered inward and tidally disrupted. Recently, the discovery of a
gaseous debris disk with a composition similar to ice giant planets
demonstrated that massive planets might also find their way into tight orbits
around white dwarfs, but it is unclear whether the planets can survive the
journey. So far, the detection of intact planets in close orbits around white
dwarfs has remained elusive. Here, we report the discovery of a giant planet
candidate transiting the white dwarf WD 1856+534 (TIC 267574918) every 1.4
days. The planet candidate is roughly the same size as Jupiter and is no more
than 14 times as massive (with 95% confidence). Other cases of white dwarfs
with close brown dwarf or stellar companions are explained as the consequence
of common-envelope evolution, wherein the original orbit is enveloped during
the red-giant phase and shrinks due to friction. In this case, though, the low
mass and relatively long orbital period of the planet candidate make
common-envelope evolution less likely. Instead, the WD 1856+534 system seems to
demonstrate that giant planets can be scattered into tight orbits without being
tidally disrupted, and motivates searches for smaller transiting planets around
white dwarfs.Comment: 50 pages, 12 figures, 2 tables. Published in Nature on Sept. 17,
2020. The final authenticated version is available online at:
https://www.nature.com/articles/s41586-020-2713-
- …