13,711 research outputs found
An Investigation of the Adsorption Characteristics of 5'ATP and 5'AMP onto the Surface of Caso4 x 2H2O
A model has been proposed in which solid surfaces can act as a site for cataletic activity of condensation reactions for certain biomolecules. From this model, the adsorption characteristics of 5'ATP and 5'AMP onto the surface of CaSO4.2H2O was chosen for study. It has been proven that 5'ATP and 5'AMP do adsorb onto the surface of CaSO4. Studies were then made to determine the dependence of absorption versus time, concentration, ionic strength and pH. It was found that the adsorption of the nucleotides is highly pH dependent, primarily determined by the phosphate acid groups of the nucleic acid molecule. From this investigation, the data obtained is discussed in relation to the model for the prebiotic earth
An investigation of the adsorption characteristics of 5 prime ATP and 5 prime AMP onto the surface of CaSO sub 4 x 2H sub 2 O
A model has been proposed (Lahev and Chans, 1982) in which solid surfaces can act as a site for catalytic activity of condensation reactions for certain biomolecules. From this model, the adsorption characteristics of 5'ATP and 5'AMP onto the surface of CaSO4 2H2O was chosen for study. It has been proven that 5'ATP and 5'AMP do adsorb onto the surface of CaSO4. Studies were then made to determine the dependence of adsorption versus time, concentration, ionic strength and pH. It was found that the adsorption of the nucleotides is highly pH dependent, primarily determined by the phosphate acid groups of the nucleic acid molecule. From this investigation, the data obtained are discussed in relation to the model for the prebiotic earth
Compactness for Holomorphic Supercurves
We study the compactness problem for moduli spaces of holomorphic supercurves
which, being motivated by supergeometry, are perturbed such as to allow for
transversality. We give an explicit construction of limiting objects for
sequences of holomorphic supercurves and prove that, in important cases, every
such sequence has a convergent subsequence provided that a suitable extension
of the classical energy is uniformly bounded. This is a version of Gromov
compactness. Finally, we introduce a topology on the moduli spaces enlarged by
the limiting objects which makes these spaces compact and metrisable.Comment: 38 page
Influence of ruminal degradable intake protein restriction on characteristics of digestion and growth performance of feedlot cattle during the late finishing phase.
Two trials were conducted to evaluate the influence of supplemental urea withdrawal on characteristics of digestion (Trial 1) and growth performance (Trial 2) of feedlot cattle during the last 40 days on feed. Treatments consisted of a steam-flaked corn-based finishing diet supplemented with urea to provide urea fermentation potential (UFP) of 0, 0.6, and 1.2%. In Trial 1, six Holstein steers (160 ± 10 kg) with cannulas in the rumen and proximal duodenum were used in a replicated 3 × 3 Latin square experiment. Decreasing supplemental urea decreased (linear effect, P ≤ 0.05) ruminal OM digestion. This effect was mediated by decreases (linear effect, P ≤ 0.05) in ruminal digestibility of NDF and N. Passage of non-ammonia and microbial N (MN) to the small intestine decreased (linear effect, P = 0.04) with decreasing dietary urea level. Total tract digestion of OM (linear effect, P = 0.06), NDF (linear effect, P = 0.07), N (linear effect, P = 0.04) and dietary DE (linear effect, P = 0.05) decreased with decreasing urea level. Treatment effects on total tract starch digestion, although numerically small, likewise tended (linear effect, P = 0.11) to decrease with decreasing urea level. Decreased fiber digestion accounted for 51% of the variation in OM digestion. Ruminal pH was not affected by treatments averaging 5.82. Decreasing urea level decreased (linear effect, P ≤ 0.05) ruminal N-NH and blood urea nitrogen. In Trial 2, 90 crossbred steers (468 kg ± 8), were used in a 40 d feeding trial (5 steers/pen, 6 pens/ treatment) to evaluate treatment effects on final-phase growth performance. Decreasing urea level did not affect DMI, but decreased (linear effect, P ≤ 0.03) ADG, gain efficiency, and dietary NE. It is concluded that in addition to effects on metabolizable amino acid flow to the small intestine, depriving cattle of otherwise ruminally degradable N (RDP) during the late finishing phase may negatively impact site and extent of digestion of OM, depressing ADG, gain efficiency, and dietary NE
Chlamydia Hijacks ARF GTPases To Coordinate Microtubule Posttranslational Modifications and Golgi Complex Positioning.
The intracellular bacterium Chlamydia trachomatis develops in a parasitic compartment called the inclusion. Posttranslationally modified microtubules encase the inclusion, controlling the positioning of Golgi complex fragments around the inclusion. The molecular mechanisms by which Chlamydia coopts the host cytoskeleton and the Golgi complex to sustain its infectious compartment are unknown. Here, using a genetically modified Chlamydia strain, we discovered that both posttranslationally modified microtubules and Golgi complex positioning around the inclusion are controlled by the chlamydial inclusion protein CT813/CTL0184/InaC and host ARF GTPases. CT813 recruits ARF1 and ARF4 to the inclusion membrane, where they induce posttranslationally modified microtubules. Similarly, both ARF isoforms are required for the repositioning of Golgi complex fragments around the inclusion. We demonstrate that CT813 directly recruits ARF GTPases on the inclusion membrane and plays a pivotal role in their activation. Together, these results reveal that Chlamydia uses CT813 to hijack ARF GTPases to couple posttranslationally modified microtubules and Golgi complex repositioning at the inclusion.IMPORTANCEChlamydia trachomatis is an important cause of morbidity and a significant economic burden in the world. However, how Chlamydia develops its intracellular compartment, the so-called inclusion, is poorly understood. Using genetically engineered Chlamydia mutants, we discovered that the effector protein CT813 recruits and activates host ADP-ribosylation factor 1 (ARF1) and ARF4 to regulate microtubules. In this context, CT813 acts as a molecular platform that induces the posttranslational modification of microtubules around the inclusion. These cages are then used to reposition the Golgi complex during infection and promote the development of the inclusion. This study provides the first evidence that ARF1 and ARF4 play critical roles in controlling posttranslationally modified microtubules around the inclusion and that Chlamydia trachomatis hijacks this novel function of ARF to reposition the Golgi complex
Electrical transport and optical studies of ferromagnetic Cobalt doped ZnO nanoparticles exhibiting a metal-insulator transition
The observed correlation of oxygen vacancies and room temperature
ferromagnetic ordering in Co doped ZnO1-o nanoparticles reported earlier (Naeem
et al Nanotechnology 17, 2675-2680) has been further explored by transport and
optical measurements. In these particles room temperature ferromagnetic
ordering had been observed to occur only after annealing in forming gas. In the
current work the optical properties have been studied by diffuse reflection
spectroscopy in the UV-Vis region and the band gap of the Co doped compositions
has been found to decrease with Co addition. Reflections minima are observed at
the energies characteristic of Co+2 d-d (tethrahedral symmetry) crystal field
transitions, further establishing the presence of Co in substitutional sites.
Electrical transport measurements on palletized samples of the nanoparticles
show that the effect of a forming gas is to strongly decrease the resistivity
with increasing Co concentration. For the air annealed and non-ferromagnetic
samples the variation in the resistivity as a function of Co content are
opposite to those observed in the particles prepared in forming gas. The
ferromagnetic samples exhibit an apparent change from insulator to metal with
increasing temperatures for T>380K and this change becomes more pronounced with
increasing Co content. The magnetic and resistive behaviors are correlated by
considering the model by Calderon et al [M. J. Calderon and S. D. Sarma, Annals
of Physics 2007 (Accepted doi: 10.1016/j.aop.2007.01.010] where the
ferromagnetism changes from being mediated by polarons in the low temperature
insulating region to being mediated by the carriers released from the weakly
bound states in the higher temperature metallic region.Comment: 7 pages, 6 figure
A submillimeter search for pre- and proto-brown dwarfs in Chamaeleon II
Context. Chamaeleon II molecular cloud is an active star forming region that
offers an excellent opportunity for studying the formation of brown dwarfs in
the southern hemisphere. Aims. Our aims are to identify a population of pre-
and proto- brown dwarfs (5 sigma mass limit threshold of ~0.015 Msun) and
provide information on the formation mechanisms of substellar objects. Methods.
We performed high sensitivity observations at 870 microns using the LABOCA
bolometer at the APEX telescope towards an active star forming region in
Chamaeleon II. The data are complemented with an extensive multiwavelength
catalogue of sources from the optical to the far-infrared to study the nature
of the LABOCA detections. Results. We detect fifteen cores at 870 microns, and
eleven of them show masses in the substellar regime. The most intense objects
in the surveyed field correspond to the submillimeter counterparts of the well
known young stellar objects DK Cha and IRAS 12500-7658. We identify a possible
proto-brown dwarf candidate (ChaII-APEX-L) with IRAC emission at 3.6 and 4.5
microns. Conclusions. Our analysis indicates that most of the spatially
resolved cores are transient, and that the point-like starless cores in the
sub-stellar regime (with masses between 0.016 Msun and 0.066 Msun) could be
pre-brown dwarfs cores gravitationally unstable if they have radii smaller than
220 AU to 907 AU (1.2" to 5" at 178 pc) respectively for different masses. ALMA
observations will be the key to reveal the energetic state of these pre-brown
dwarfs candidates.Comment: 11 pages, 6 figure
The first direct measurement of ¹²C (¹²C,n) ²³Mg at stellar energies
Neutrons produced by the carbon fusion reaction ¹²C(¹²C,n)²³Mg play an important role in stellar nucleosynthesis. However, past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. We present the first direct measurement that extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction ¹²C(¹²C,p)²³Na. The new reaction rate has been determined with a well-defined uncertainty that exceeds the precision required by astrophysics models. Using our constrained rate, we find that ¹²C(¹²C,n)²³Mg is crucial to the production of Na and Al in Pop-III Pair Instability Supernovae. It also plays a non-negligible role in the production of weak s-process elements as well as in the production of the important galacti
- …
