130 research outputs found
Penetrating Bladder Trauma: A High Risk Factor for Associated Rectal Injury
Demographics and mechanisms were analyzed in prospectively maintained level one trauma center database 1990–2012. Among 2,693 trauma laparotomies, 113 (4.1%) presented bladder lesions; 51.3% with penetrating injuries (n=58); 41.3% (n=24) with rectal injuries, males corresponding to 95.8%, mean age 29.8 years; 79.1% with gunshot wounds and 20.9% with impalement; 91.6% arriving the emergence room awake (Glasgow 14-15), hemodynamically stable (average systolic blood pressure 119.5 mmHg); 95.8% with macroscopic hematuria; and 100% with penetrating stigmata. Physical exam was not sensitive for rectal injuries, showing only 25% positivity in patients. While 60% of intraperitoneal bladder injuries were surgically repaired, extraperitoneal ones were mainly repaired using Foley catheter alone (87.6%). Rectal injuries, intraperitoneal in 66.6% of the cases and AAST-OIS grade II in 45.8%, were treated with primary suture plus protective colostomy; 8.3% were sigmoid injuries, and 70.8% of all injuries had a minimum stool spillage. Mean injury severity score was 19; mean length of stay 10 days; 20% of complications with no death. Concomitant rectal injuries were not a determinant prognosis factor. Penetrating bladder injuries are highly associated with rectal injuries (41.3%). Heme-negative rectal examination should not preclude proctoscopy and eventually rectal surgical exploration (only 25% sensitivity)
Not only dominant, not only optic atrophy: expanding the clinical spectrum associated with OPA1 mutations
Background: Heterozygous mutations in OPA1 are a common cause of autosomal dominant optic atrophy, sometimes associated with extra-ocular manifestations. Few cases harboring compound heterozygous OPA1 mutations have been described manifesting complex neurodegenerative disorders in addition to optic atrophy. Results: We report here three patients: one boy showing an early-onset mitochondrial disorder with hypotonia, ataxia and neuropathy that was severely progressive, leading to early death because of multiorgan failure; two unrelated sporadic girls manifesting a spastic ataxic syndrome associated with peripheral neuropathy and, only in one, optic atrophy. Using a targeted resequencing of 132 genes associated with mitochondrial disorders, in two probands we found compound heterozygous mutations in OPA1: in the first a 5 nucleotide deletion, causing a frameshift and insertion of a premature stop codon (p.Ser64Asnfs*7), and a missense change (p.Ile437Met), which has recently been reported to have clinical impact; in the second, a novel missense change (p.Val988Phe) co-occurred with the p.Ile437Met substitution. In the third patient a homozygous mutation, c.1180G > A (p.Ala394Thr) in OPA1 was detected by a trio-based whole exome sequencing approach. One of the patients presented also variants in mitochondrial DNA that may have contributed to the peculiar phenotype. The deleterious effect of the identified missense changes was experimentally validated in yeast model. OPA1 level was reduced in available patients\u2019 biological samples, and a clearly fragmented mitochondrial network was observed in patients\u2019 fibroblasts. Conclusions: This report provides evidence that bi-allelic OPA1 mutations may lead to complex and severe multi-system recessive mitochondrial disorders, where optic atrophy might not represent the main feature
Surfacing rates, swim speeds, and patterns of movement of Antarctic blue whales
During three surveys in the austral summers of 2013, 2015, 2019, data on Antarctic blue whale blow rates, dive times, swim speeds, and broadscale movements were collected using video photogrammetric tracking and intra-voyage photo-identification. A total of 24.4 hours of video observations were suitable for blow interval or movement analysis. Similar to other blue whale populations, Antarctic blue whale dive behaviour comprised a sequence of short dives followed by a long dive with a mean dive time for short dives of 17.6 s, and a mean long dive time of 189.3 s. Two separate methods were used to estimate the average blow rate for Antarctic blue whales, giving estimates of 59.7 and 63.2 blows per hour. The overall mean swim speed over the course of all suitable video track segments was 1.59 ms-1, but there were significant differences between years in the mean of the overall movement rate for each track; average movement rates were lower in 2015 compared to 2013 and 2019 (0.90 ms-1, 1.84 and 1.55 ms-1 respectively), with higher rates of turning in 2015. In 2019, there was faster overall movement through the study area in a consistent direction. The total number of photo-identified blue whales re-sighted intra-season in 2013 was nine (out of 50 identified individuals); in 2015 it was seven (out of 46); in 2019 two (out of 25). Whales remained for several days with little overall movement within the 2015 study area, whereas they were moving through the study area in 2019, which would explain the low number of intra-season resights. The predominant heading in 2019 was towards the area of Antarctic blue whale concentrations at the entrance to the Ross Sea observed in previous years. The photo-identification data also show a high proportion of resighted whales with coherent movements. This suggests that Antarctic blue whales might travel together, at least over periods of several days or sometimes up to a month. The differences between behaviours in 2015 and 2019 in particular may be related to differences in the characteristics of krill swarms between the study areas
Inhibition of tyrosine kinase receptors by SU6668 promotes abnormal stromal development at the periphery of carcinomas
Dynamic contrast-enhanced (albumin-Gd-DTPA) magnetic resonance imaging, performed during 2 weeks of daily administration of an inhibitor of tyrosine kinase receptors (SU6668) in an HT-29 colon carcinoma model, revealed the onset of a hyper-enhancing rim, not observed in untreated tumours. To account for tissue heterogeneity in the quantitative analysis, we segmented tumours into three subunits automatically identified by cluster analysis of the enhancement curves using a k-means algorithm. Transendothelial permeability (Kps) and fractional plasma volume (fPV) were calculated in each subunit. An avascular and necrotic region, an intermediate zone and a well-vascularised periphery were reliably identified. During untreated tumour growth, the identified sub-regions did not substantially change their enhancement pattern. Treatment with SU6668 induced major changes at tumour periphery where a significant increase of Kps and fPV was observed with respect to control tumours. Histology revealed a sub-capsular layer composed of hyper-dense viable tumour cells in the periphery of untreated tumours. The rim of viable neoplastic cells was reduced in treated tumours, and replaced by loose connective tissue characterised by numerous vessels, which explains the observed hyper-enhancement. The present data show a peripheral abnormal development of cancer-associated stroma, indicative of an adaptive response to anti-angiogenic treatment
Antarctic sonobuoy surveys for blue whales from 2006-2021 reveal contemporary distribution, changes over time, and paths to further our understanding of their distribution and biology
Seven passive acoustic surveys for marine mammal sounds were conducted by deploying sonobuoys along ship tracks during Antarctic voyages spanning years 2006-2021. These surveys included nearly 330° of longitude throughout Antarctic (south of 60°S) and sub-Antarctic (between 50-60°S) latitudes. Here, we summarise the presence of calls from critically endangered Antarctic blue whales (Balaenoptera musculus intermedia) detected on all seven of these surveys. We describe and compare the spatial distribution of detections of three different types of Antarctic blue whale calls: unit-A, Z-calls, and D-calls. Three sets of voyages partially overlapped spatially but in different years, providing three regions (Indian Sector, Dumont d’Urville Sea, Ross Sea) to investigate differences over time for these three different call types. The proportion of sonobuoys with calls present was significantly higher in the more recent years for seven of the 15 combinations of years, regions, and call type. The proportion of sonobuoys with calls present was significantly lower only for one of the 15 combinations (unit A in the Ross Sea between 2015 vs 2017), and not significantly different for the remaining seven pairwise comparisons. We discuss possible explanations for these observations including: differences in probability of detection, whale behaviour, whale distribution, and abundance. These explanations are not mutually exclusive and cannot yet be resolved without application of complex analytical methods and collection of additional data. Lastly, we discuss future work that could help clarify the contributions of each of these potential drivers of acoustic detection. We propose continued acoustic data collection, application of new analytical methods, and collection of other synergistic data from Antarctic blue whales on their feeding grounds as a basis for future work on this species. This could provide a cost effective and holistic means of monitoring their status after the effects of 20th century industrial whaling, as well as their responses to natural and anthropogenic changes to their main prey, Antarctic krill, and a changing climate
Southern right whale vocalizations on foraging grounds in South Georgia
Southern right whale vocalizations were recorded concurrently with visual observations off the sub-Antarctic Island of South Georgia, and the characteristics of these calls were described. Calls were also compared to those of humpback whales at South Georgia, to determine how the two species might reliably be distinguished acoustically. The southern right whale calls measured (which were all upcalls) had lower frequency with peak energy and were mostly shorter in duration than the calls measured from humpback whales. The frequency upsweep and the lack of harmonics of southern right whale calls were also diagnostic characteristics
Genetic diversity and connectivity of southern right whales (Eubalaena australis) found in the Brazil and Chile-Peru wintering grounds and the South Georgia (Islas Georgias del Sur) feeding ground
As species recover from exploitation, continued assessments of connectivity and population structure are warranted to provide information for conservation and management. This is particularly true in species with high dispersal capacity, such as migratory whales, where patterns of connectivity could change rapidly. Here we build on a previous long-term, large-scale collaboration on southern right whales (Eubalaena australis) to combine new (nnew) and published (npub) mitochondrial (mtDNA) and microsatellite genetic data from all major wintering grounds and, uniquely, the South Georgia (Islas Georgias del Sur: SG) feeding grounds. Specifically, we include data from Argentina (npub mtDNA/microsatellite=208/46), Brazil (nnew mtDNA/microsatellite=50/50), South Africa (nnew mtDNA/microsatellite=66/77, npub mtDNA/microsatellite=350/47), Chile-Peru (nnew mtDNA/microsatellite=1/1), the Indo-Pacific (npub mtDNA/microsatellite=769/126), and SG (npub mtDNA/microsatellite=8/0, nnew mtDNA/microsatellite=3/11) to investigate the position of previously unstudied habitats in the migratory network: Brazil, SG and Chile-Peru. These new genetic data show connectivity between Brazil and Argentina, exemplified by weak genetic differentiation and the movement of one genetically identified individual between the South American grounds. The single sample from Chile-Peru had a mtDNA haplotype previously only observed in the Indo-Pacific and had a nuclear genotype that appeared admixed between the Indo-Pacific and South Atlantic, based on genetic clustering and assignment algorithms. The SG samples were clearly South Atlantic, and were more similar to the South American than the South African wintering grounds. This study highlights how international collaborations are critical to provide context for emerging or recovering regions, like the SG feeding ground, as well as those that remain critically endangered, such as Chile-Peru
Photo-identification and satellite telemetry connect southern right whales from South Georgia Island (Islas Georgias del Sur) with multiple feeding and calving grounds in the southwest Atlantic
The sub-Antarctic waters of South Georgia Island (Islas Georgias del Sur, SG/IG) are a regularly visited feeding ground for southern right whales (Eubalaena australis, SRW) in the southwest Atlantic. Satellite telemetry and photo-identification records were compared to better understand the role of SG/IG in the SRW migratory network. We present the first insights from SRW satellite-tracked from the SG/IG feeding ground, habitat use patterns in the Scotia Arc, and movements to Antarctic habitats. Photo-identification comparisons to calving and feeding areas across the South Atlantic and a review of sightings of cetaceans reported from Bird Island (west of SG/IG) since 1979 illuminate long-term habitat use patterns in SG/IG. We present the first recorded migratory movement between SG/IG and multiple countries: Argentina, Uruguay, and Brazil. Photo-identification (1) linked SG/IG to a female SRW with a long-term sighting history in Brazil, and (2) provided the first match between SG/IG and the western Antarctic Peninsula, suggesting the latter could extend the feeding area for southwest Atlantic SRW. Satellite tracking and opportunistic sightings suggest that shelf and coastal waters west of SG/IG represent an important multi-season SRW feeding habitat and add to our overall understanding of habitats and ranges occupied by recovering southwest Atlantic SRW.Funding from an EU BEST 2.0 Medium Grant 1594, with additional support provided by a DARWIN PLUS award DPLUS057 and additional funding from the World Wildlife Fund, South Georgia Heritage Trust, and Friends of South Georgia Island.http://wileyonlinelibrary.com/journal/mmshj2024Mammal Research InstituteZoology and EntomologySDG-14:Life below wate
Global Perspectives on Task Shifting and Task Sharing in Neurosurgery.
BACKGROUND: Neurosurgical task shifting and task sharing (TS/S), delegating clinical care to non-neurosurgeons, is ongoing in many hospital systems in which neurosurgeons are scarce. Although TS/S can increase access to treatment, it remains highly controversial. This survey investigated perceptions of neurosurgical TS/S to elucidate whether it is a permissible temporary solution to the global workforce deficit. METHODS: The survey was distributed to a convenience sample of individuals providing neurosurgical care. A digital survey link was distributed through electronic mailing lists of continental neurosurgical societies and various collectives, conference announcements, and social media platforms (July 2018-January 2019). Data were analyzed by descriptive statistics and univariate regression of Likert Scale scores. RESULTS: Survey respondents represented 105 of 194 World Health Organization member countries (54.1%; 391 respondents, 162 from high-income countries and 229 from low- and middle-income countries [LMICs]). The most agreed on statement was that task sharing is preferred to task shifting. There was broad consensus that both task shifting and task sharing should require competency-based evaluation, standardized training endorsed by governing organizations, and maintenance of certification. When perspectives were stratified by income class, LMICs were significantly more likely to agree that task shifting is professionally disruptive to traditional training, task sharing should be a priority where human resources are scarce, and to call for additional TS/S regulation, such as certification and formal consultation with a neurosurgeon (in person or electronic/telemedicine). CONCLUSIONS: Both LMIC and high-income countries agreed that task sharing should be prioritized over task shifting and that additional recommendations and regulations could enhance care. These data invite future discussions on policy and training programs
Photo-identification and satellite telemetry connect southern right whales from South Georgia Island (Islas Georgias del Sur) with multiple feeding and calving grounds in the southwest Atlantic
The sub-Antarctic waters of South Georgia Island (Islas Georgias del Sur, SG/IG) are a regularly visited feeding ground for southern right whales (Eubalaena australis, SRW) in the southwest Atlantic. Satellite telemetry and photo-identification records were compared to better understand the role of SG/IG in the SRW migratory network. We present the first insights from SRW satellite-tracked from the SG/IG feeding ground, habitat use patterns in the Scotia Arc, and movements to Antarctic habitats. Photo-identification comparisons to calving and feeding areas across the South Atlantic and a review of sightings of cetaceans reported from Bird Island (west of SG/IG) since 1979 illuminate long-term habitat use patterns in SG/IG. We present the first recorded migratory movement between SG/IG and multiple countries: Argentina, Uruguay, and Brazil. Photo-identification (1) linked SG/IG to a female SRW with a long-term sighting history in Brazil, and (2) provided the first match between SG/IG and the western Antarctic Peninsula, suggesting the latter could extend the feeding area for southwest Atlantic SRW. Satellite tracking and opportunistic sightings suggest that shelf and coastal waters west of SG/IG represent an important multi-season SRW feeding habitat and add to our overall understanding of habitats and ranges occupied by recovering southwest Atlantic SRW
- …