42 research outputs found

    Melatonin Analogue Antiproliferative and Cytotoxic Effects on Human Prostate Cancer Cells

    Get PDF
    Melatonin has been indicated as a possible oncostatic agent in different types of cancer, its antiproliferative role being demonstrated in several in vitro and in vivo experimental models of tumors. Specifically, melatonin was proven to inhibit cell growth of both androgen-dependent and independent prostate cancer cells, through various mechanisms. A number of melatonin derivatives have been developed and tested for their role in the prevention and treatment of neoplastic diseases. We recently proved the in vitro and in vivo anticancer activity of UCM 1037, a newly-synthetized melatonin analogue, on melanoma and breast cancer cells. In this study we evaluated UCM 1037 effects on cell proliferation, cell cycle distribution, and cytotoxicity in LNCaP, PC3, DU145, and 22Rv1 prostate cancer cells. We demonstrated significant dose- and time-dependent UCM 1037 antiproliferative effects in androgen-sensitive LNCaP and 22Rv1 cells. Data from flow cytometric studies suggest that UCM 1037 is highly cytotoxic in androgen-sensitive prostate cancer cells, although no substantial increase in the apoptotic cell fraction has been observed. UCM 1037 cytotoxic effects were much less evident in androgen-insensitive PC3 and DU145 cells. Experiments performed to gain insights into the possible mechanism of action of the melatonin derivative revealed that UCM 1037 down-regulates androgen receptor levels and Akt activation in LNCaP and 22Rv1 cells

    Damaged microtubules can inactivate BCL-2 by means of the mTOR kinase

    Get PDF
    Rapamycin, a specific inhibitor of the serine/threonine mTOR kinase, markedly inhibited both cell growth and apoptosis in human B-cell lines. Besides arresting cells in G(1) by increasing p27(kip1), rapamycin tripled the cellular level of the BCL-2 protein. The activity was dose-dependent and specific for the p27(kip1) and BCL-2 proteins. Rapamycin did not affect bcl-2 mRNA although it increased cellular BCL-2 concentration by inhibiting phosphorylation, a mechanism initiating the decay process. To add new insight, we combined rapamycin treatment with treatment by taxol, which, by damaging microtubules, can phosphorylate BCL-2 and activate apoptosis. It was found that the mTOR kinase was activated in cells treated with taxol or with nocodazole although it was inhibited in cells pre-treated with rapamycin. BCL-2 phosphorylation, apoptosis and hyperdiploidy were also inhibited by rapamycin. In contrast, taxol-induced microtubule stabilization or metaphase synchronization were not inhibited by rapamycin. Taken together, these findings indicate that mTOR belongs to the enzymatic cascade that, starting from damaged microtubules, phosphorylates BCL-2. By regulating apoptosis, in addition to the control of a multitude of growth-related pathways, mTOR plays a nodal role in signaling G(1) and G(2)-M events

    CD40L induces multidrug resistance to apoptosis in breast carcinoma and lymphoma cells through caspase independent and dependent pathways

    Get PDF
    BACKGROUND: CD40L was found to reduce doxorubicin-induced apoptosis in non Hodgkin's lymphoma cell lines through caspase-3 dependent mechanism. Whether this represents a general mechanism for other tumor types is unknown. METHODS: The resistance induced by CD40L against apoptosis induced by a panel of cytotoxic chemotherapeutic drugs in non Hodgkin's lymphoma and breast carcinoma cell lines was investigated. RESULTS: Doxorubicin, cisplatyl, etoposide, vinblastin and paclitaxel increased apoptosis in a dose-dependent manner in breast carcinoma as well as in non Hodgkin's lymphoma cell lines. Co-culture with irradiated L cells expressing CD40L significantly reduced the percentage of apoptotic cells in breast carcinoma and non Hodgkin's lymphoma cell lines treated with these drugs. In breast carcinoma cell lines, these 5 drugs induced an inconsistent increase of caspase-3/7 activity, while in non Hodgkin's lymphoma cell lines all 5 drugs increased caspase-3/7 activity up to 28-fold above baseline. Co-culture with CD40L L cells reduced (-39% to -89%) the activation of caspase-3/7 induced by these agents in all 5 non Hodgkin's lymphoma cell lines, but in none of the 2 breast carcinoma cell lines. Co culture with CD40L L cells also blocked the apoptosis induced by exogenous ceramides in breast carcinoma and non Hodgkin's lymphoma cell lines through a caspase-3-like, 8-like and 9-like dependent pathways. CONCLUSION: These results indicate that CD40L expressed on adjacent non tumoral cells induces multidrug resistance to cytotoxic agents and ceramides in both breast carcinoma and non Hodgkin's lymphoma cell lines, albeit through a caspase independent and dependent pathway respectively

    The Zinc Dyshomeostasis Hypothesis of Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ), intracellular neurofibrillary tangles (NFTs) composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau), and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques) not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1) used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2) performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3) used metallomic imaging mass spectrometry (MIMS) to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of polymerized microtubules, their binding to MAP-tau, and molecular dynamics involved in cognition. Further, our theory supports novel AD therapeutic strategies targeting intra-neuronal zinc homeostasis and microtubule dynamics to prevent neurodegeneration and cognitive decline

    Melatonin Analogue Antiproliferative and Cytotoxic Effects on Human Prostate Cancer Cells

    No full text
    Melatonin has been indicated as a possible oncostatic agent in different types of cancer, its antiproliferative role being demonstrated in several in vitro and in vivo experimental models of tumors. Specifically, melatonin was proven to inhibit cell growth of both androgen-dependent and independent prostate cancer cells, through various mechanisms. A number of melatonin derivatives have been developed and tested for their role in the prevention and treatment of neoplastic diseases. We recently proved the in vitro and in vivo anticancer activity of UCM 1037, a newly-synthetized melatonin analogue, on melanoma and breast cancer cells. In this study we evaluated UCM 1037 effects on cell proliferation, cell cycle distribution, and cytotoxicity in LNCaP, PC3, DU145, and 22Rv1 prostate cancer cells. We demonstrated significant dose- and time-dependent UCM 1037 antiproliferative effects in androgen-sensitive LNCaP and 22Rv1 cells. Data from flow cytometric studies suggest that UCM 1037 is highly cytotoxic in androgen-sensitive prostate cancer cells, although no substantial increase in the apoptotic cell fraction has been observed. UCM 1037 cytotoxic effects were much less evident in androgen-insensitive PC3 and DU145 cells. Experiments performed to gain insights into the possible mechanism of action of the melatonin derivative revealed that UCM 1037 down-regulates androgen receptor levels and Akt activation in LNCaP and 22Rv1 cells

    Down-modulation of Bcl-2 sensitizes PTEN-mutated prostate cancer cells to starvation and taxanes

    No full text
    BACKGROUND: The critical role of PTEN in regulating the PI3K/Akt/mTOR signaling pathway raises the possibility that targeting downstream effectors of the PI3K pathway, such as Bcl-2, might be an effective anti-proliferative strategy for PTEN-deficient prostate cancer cells. METHODS: Four prostate cancer cell lines (LNCaP, PC3, DU145, 22Rv1) were assayed for their levels of total Akt and Ser473 phosphorylated Akt (p-Akt) by Western Blotting; their growth rates and sensitivity to different doses of paclitaxel were determined by cell counts after Trypan Blue dye exclusion assay. Cells were subjected to different combinations of starvation (growth factors and/or aminoacids withdrawal), paclitaxel treatment and Bcl-2 silencing by siRNA. Cell viability was evaluated by Trypan Blue dye exclusion assay, Propidium Iodide (PI) and Annexin-V/PI staining. RESULTS: We assessed the sensitivity of different prostate cancer cell lines to starvation and we observed a differential response correlated to the levels of Akt activation. The four prostate cancer cell lines also showed different sensitivity to taxol treatments; LNCaP and 22Rv1 cells were more resistant to paclitaxel than DU145 and PC3 cells. Combining taxol with growth factors and aminoacids deprivation leaded to a more than additive reduction of cell viability compared to single treatments in PTEN-mutant LNCaP cells. Down-modulation of anti-apoptotic Bcl-2 protein by siRNA sensitized LNCaP cells to taxanes and starvation induced cell death. CONCLUSIONS: Silencing Bcl-2 in PTEN-mutated prostate cancer cells enhances the apoptotic effects of combined starvation and taxol treatments, indicating that inhibition of Bcl-2 may be of significant value in PTEN-mutant tumor therapy

    Combination of photodynamic therapy + immunotherapy + chemotherapy in murine leukemia

    No full text
    Photodynamic therapy (PDT) is a treatment for cancer based on the photosensitization of tumor cells by photosensitive drugs and their subsequent destruction on exposure to light of particular wavelength. The combination of drug uptake in malignant tissues and selective delivery of laser-generated light provides an effective therapy with efficient tumor citotoxicity and minimal normal tissue damage. Since immune response of the host is important in the control of tumor growth and spreading, PDT is able to increase the antitumor immunity. In our laboratory we examined the antitumor effect of combination of PDT, with photoactivated M-THPC (meta-tetrahydroxyphenylchlorin, FOSCAN, Temoporphirin), adoptive immunotherapy, with immune lymphocytes, and chemotherapy on advanced murine tumors. Mice bearing L1210 tumor were treated at day +4 with Navelbine (NVB 1mg/Kg), at day +5,+6 with PDT (0.3mg/Kg of mTHPC and 100mW/cm(2) x 200'' of exposure of laser light), and at day + 7 with immune lymphocytes(IL), collected from mice pretreated with PDT(2x10(7) cells). The results show that the combination NVB + PDT + IL demonstrates a significant synergistic antitumor effect while the chemotherapy treatment with low dose of the drug is uneffective. The same positive results were obtained with the combination of Cisplatin (CDDP 0.5mg/Kg), PDT and IL, while the CDDP treatment alone is completely uneffective. In conclusion, these results suggest that it is possible to completely cure animals bearing advanced tumors, with a combined therapy, PDT + adoptive immunotherapy + low dose chemotherap
    corecore