38 research outputs found

    Antineutrino Geophysics with Liquid Scintillator Detectors

    Get PDF
    Detecting the antineutrinos emitted by the decay of radioactive elements in the mantle and crust could provide a direct measurement of the total abundance of uranium and thorium in the Earth. In calculating the antineutrino flux at specific sites, the local geology of the crust and the background from the world's nuclear power reactors are important considerations. Employing a global crustal map, with type and thickness data, and using recent estimates of the uranium and thorium distribution in the Earth, we calculate the antineutrino event rate for two new neutrino detectors. We show that spectral features allow terrestrial antineutrino events to be identified above reactor antineutrino backgrounds and that the uranium and thorium contributions can be separately determined.Comment: Published paper differs from original submitted preprint because reviewers suggested updated continental crust U/Th abundances. Kamioka geographical location error was in preprint, partially corrected in published version. This version is the same as the published paper, with Kamioka fully corrected. Because of recent interest in this topic, this version is being made available, despite this work being 8 years ol

    Final results of Borexino Phase-I on low energy solar neutrino spectroscopy

    Full text link
    Borexino has been running since May 2007 at the LNGS with the primary goal of detecting solar neutrinos. The detector, a large, unsegmented liquid scintillator calorimeter characterized by unprecedented low levels of intrinsic radioactivity, is optimized for the study of the lower energy part of the spectrum. During the Phase-I (2007-2010) Borexino first detected and then precisely measured the flux of the 7Be solar neutrinos, ruled out any significant day-night asymmetry of their interaction rate, made the first direct observation of the pep neutrinos, and set the tightest upper limit on the flux of CNO neutrinos. In this paper we discuss the signal signature and provide a comprehensive description of the backgrounds, quantify their event rates, describe the methods for their identification, selection or subtraction, and describe data analysis. Key features are an extensive in situ calibration program using radioactive sources, the detailed modeling of the detector response, the ability to define an innermost fiducial volume with extremely low background via software cuts, and the excellent pulse-shape discrimination capability of the scintillator that allows particle identification. We report a measurement of the annual modulation of the 7 Be neutrino interaction rate. The period, the amplitude, and the phase of the observed modulation are consistent with the solar origin of these events, and the absence of their annual modulation is rejected with higher than 99% C.L. The physics implications of phase-I results in the context of the neutrino oscillation physics and solar models are presented

    Measurement of neutrino flux from the primary proton--proton fusion process in the Sun with Borexino detector

    Full text link
    Neutrino produced in a chain of nuclear reactions in the Sun starting from the fusion of two protons, for the first time has been detected in a real-time detector in spectrometric mode. The unique properties of the Borexino detector provided an oppurtunity to disentangle pp-neutrino spectrum from the background components. A comparison of the total neutrino flux from the Sun with Solar luminosity in photons provides a test of the stability of the Sun on the 105^{5} years time scale, and sets a strong limit on the power production in the unknown energy sources in the Sun of no more than 4\% of the total energy production at 90\% C.L.Comment: 15 pages, 2 tables, 3 figure

    Cosmogenic Backgrounds in Borexino at 3800 m water-equivalent depth

    Full text link
    The solar neutrino experiment Borexino, which is located in the Gran Sasso underground laboratories, is in a unique position to study muon-induced backgrounds in an organic liquid scintillator. In this study, a large sample of cosmic muons is identified and tracked by a muon veto detector external to the liquid scintillator, and by the specific light patterns observed when muons cross the scintillator volume. The yield of muon-induced neutrons is found to be Yn =(3.10+-0.11)10-4 n/({\mu} (g/cm2)). The distance profile between the parent muon track and the neutron capture point has the average value {\lambda} = (81.5 +- 2.7)cm. Additionally the yields of a number of cosmogenic radioisotopes are measured for 12N, 12B, 8He, 9C, 9Li, 8B, 6He, 8Li, 11Be, 10C and 11C. All results are compared with Monte Carlo simulation predictions using the Fluka and Geant4 packages. General agreement between data and simulation is observed for the cosmogenic production yields with a few exceptions, the most prominent case being 11C yield for which both codes return about 50% lower values. The predicted {\mu}-n distance profile and the neutron multiplicity distribution are found to be overall consistent with data.Comment: 26 pages, 13 figures (in 14 files), 4 tables. 3 extra data files. accepted by JCA

    Large-scale liquid scintillation detectors for solar neutrinos

    No full text
    Large-scale liquid scintillation detectors are capable of providing spectral yields of the low energy solar neutrinos. These detectors require > 100 tons of liquid scintillator with high optical and radiopurity. In this paper requirements for low-energy neutrino detection by liquid scintillation are specified and the procedures to achieve low backgrounds in large-scale liquid scintillation detectors for solar neutrinos are reviewed. The designs, operations and achievements of Borexino, KamLAND and SNO+ in measuring the low-energy solar neutrino fluxes are reviewed
    corecore