20 research outputs found

    Site-selective installation of BASHY fluorescent dyes to Annexin V for targeted detection of apoptotic cells

    Get PDF
    Fluorophores are indispensable for imaging biological processes. We report the design and synthesis of azide-tagged boronic acid salicylidenehydrazone (BASHY) dyes and their use for site-selective labelling of Annexin V. The Annexin V-BASHY conjugate maintained function and fluorescence as demonstrated by the targeted detection of apoptotic cells.We thank FCT Portugal (Doctoral Fellowship, SFRH/BD/94779/2013 to F. M. F. S., Postdoctoral Fellowship, SFRH/BPD/103172/2014 to P. M. S. D. C.; projects PTDC/QUI-QUI/118315/2010 and PTDC/BBB BQB/0506/2012; PTDC/QEQ-QOR/1434/2014: PTDC/SAUFAR/119389/2010; FCT Investigator to G. J. L. B. and P. M. P. G.; iMed.ULisboa grant UID/DTP/04138/2013), EU (Marie-Curie CIG to G. J. L. B.; Marie-Sklodowska Curie ITN ProteinConjugates to G. J. L. B. and P. M. P. G.), DFG (SI 2117/1-1 to F. S.), CNPq Brazil (fellowship 200456/2015-6 to J. B. B.); Ministerio de Economía y Competitividad, Madrid, Spain (grant CTQ2014-54729-C2-1-P), Junta de Andalucía (grant P12-FQM-2140) and the EPSRC (G. J. L. B.) for financial support. G. J. L. B. is a Royal Society University Research Fellow and the recipient of a European Research Council Starting Grant (TagIt)

    Stoichiometric and irreversible cysteine-selective protein modification using carbonylacrylic reagents

    Get PDF
    Maleimides remain the reagents of choice for the preparation of therapeutic and imaging protein conjugates despite the known instability of the resulting products that undergo thiol-exchange reactions in vivo\textit{in vivo}. Here we present the rational design of carbonylacrylic reagents for chemoselective cysteine bioconjugation. These reagents undergo rapid thiol Michael-addition under biocompatible conditions in stoichiometric amounts. When using carbonylacrylic reagents equipped with PEG or fluorophore moieties, this method enables access to protein and antibody conjugates precisely modified at pre-determined sites. Importantly, the conjugates formed are resistant to degradation in plasma and are biologically functional, as demonstrated by the selective imaging and detection of apoptotic and HER2+ cells, respectively. The straightforward preparation, stoichiometric use and exquisite cysteine selectivity of the carbonylacrylic reagents combined with the stability of the products and the availability of biologically relevant cysteine-tagged proteins make this method suitable for the routine preparation of chemically defined conjugates for in vivo\textit{in vivo} applications.FAPESP (Grant IDs: 2012/22274-2; BEPE 2015/07509-1, 2013/25504-1), Xunta de Galicia, FCT Portugal (FCT Investigator, SFRH/BPD/103172/2014 Postdoctoral fellowship, SFRH/BD/111556/2015 PhD Studentship), European Union (Marie-Sklodowska Curie ITN Protein Conjugates), Engineering and Physical Sciences Research Council, MECD (‘Salvador Madariaga’ mobility grant PRX15/00638), MINECO (CTQ2015-70524-R, RYC-2013-14706 ), Royal Society, European Research Council Starting Grant (TagIt

    Brain-Sparing Sympathofacilitators Mitigate Obesity without Adverse Cardiovascular Effects.

    Get PDF
    Anti-obesity drugs in the amphetamine (AMPH) class act in the brain to reduce appetite and increase locomotion. They are also characterized by adverse cardiovascular effects with origin that, despite absence of any in vivo evidence, is attributed to a direct sympathomimetic action in the heart. Here, we show that the cardiac side effects of AMPH originate from the brain and can be circumvented by PEGylation (PEGyAMPH) to exclude its central action. PEGyAMPH does not enter the brain and facilitates SNS activity via theβ2-adrenoceptor, protecting mice against obesity by increasing lipolysis and thermogenesis, coupled to higher heat dissipation, which acts as an energy sink to increase energy expenditure without altering food intake or locomotor activity. Thus, we provide proof-of-principle for a novel class of exclusively peripheral anti-obesity sympathofacilitators that are devoid of any cardiovascular and brain-related side effects

    Organometallic palladium reagents for cysteine bioconjugation

    Get PDF
    Reactions based on transition metals have found wide use in organic synthesis, in particular for the functionalization of small molecules. However, there are very few reports of using transition-metal-based reactions to modify complex biomolecules, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature and mild pH) and the existence of multiple reactive functional groups found in biomolecules. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation (bioconjugation) reactions that are rapid and robust under a range of bio-compatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants and external thiol nucleophiles. The broad utility of the bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody–drug conjugates. These palladium complexes show potential as benchtop reagents for diverse bioconjugation applications.National Institutes of Health (U.S.) (GM-58160)National Institutes of Health (U.S.) (GM-101762)MIT Faculty Start-up FundDamon Runyon Cancer Research FoundationSontag Foundation (Distinguished Scientist Award)Massachusetts Institute of Technology. Dept. of Chemistry (George Buchi Research Fellowship)David H. Koch Institute for Integrative Cancer Research at MIT (Graduate Fellowship in Cancer Research

    Site-selective protein-modification chemistry for basic biology and drug development.

    Get PDF
    Nature has produced intricate machinery to covalently diversify the structure of proteins after their synthesis in the ribosome. In an attempt to mimic nature, chemists have developed a large set of reactions that enable post-expression modification of proteins at pre-determined sites. These reactions are now used to selectively install particular modifications on proteins for many biological and therapeutic applications. For example, they provide an opportunity to install post-translational modifications on proteins to determine their exact biological roles. Labelling of proteins in live cells with fluorescent dyes allows protein uptake and intracellular trafficking to be tracked and also enables physiological parameters to be measured optically. Through the conjugation of potent cytotoxicants to antibodies, novel anti-cancer drugs with improved efficacy and reduced side effects may be obtained. In this Perspective, we highlight the most exciting current and future applications of chemical site-selective protein modification and consider which hurdles still need to be overcome for more widespread use.We thank FCT Portugal (FCT Investigator to G.J.L.B.), the EU (Marie-Curie CIG to G.J.L.B. and Marie-Curie IEF to O.B.) and the EPSRC for funding. G.J.L.B. is a Royal Society University Research Fellow.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nchem.239

    Cysteine-Selective Reactions for Antibody Conjugation

    No full text
    Moving tracks from maleimide: New site-selective protein modification reactions at cysteine have been developed. Unlike conventional maleimide conjugation, which results in a labile thioether succinimide, the new bioconjugation reactions result in stable conjugates and provide opportunities to develop a new generation of homogeneous, stable, and therapeutically useful conjugates

    Trends in therapeutic drug conjugates for bacterial diseases: a patent review.

    No full text
    INTRODUCTION: Drug conjugates are trend topics in Chemical Biology. These entities are an emerging class of highly potent biopharmaceutical drugs, best known in the field of oncology, that have been also designed as a targeted therapy/diagnosis for the treatment/prevention of several bacterial diseases. Antibiotic resistance is now a major threat to public health, and targeted strategies can reduce resistance. The following review aims at giving an overview of the patented therapeutic innovations covering these areas. Particular attention has been given to antibacterial drug conjugates in the last 30 years. Areas covered: The authors provide an overview of the scientific reports describing the research and development of new drug conjugates for bacterial diseases. The review emphasizes the rationale behind synthesis, biological activities and improvement of the new drug conjugates. New technologies applied for the research in this field have also been discussed. The article is based on the most relevant literature related to the development of new therapeutic solutions. The patents presented in this review have been collected from multiple electronic databases including SciFinder, Pubmed, Espacenet and Mendeley. Expert opinion: The new drug conjugates described in the current review proved to display improved delivery, efficacy, targeting abilities and fewer side effects. Versatile approaches were invented to achieve these goals

    Construction of homogeneous antibody-drug conjugates using site-selective protein chemistry

    No full text
    Systemic chemotherapy, the current standard of care for the treatment of cancer, is rarely curative and is often accompanied by debilitating side effects. Targeted drug delivery stands as an alternative to chemotherapy, with the potential to improve upon its low efficacy and systemic toxicity. Among targeted therapeutic options, antibody-drug conjugates (ADCs) have emerged as the most promising. These conjugates represent a new class of biopharmaceuticals that selectively deliver potent cytotoxic drugs to cancer cells, sparing healthy tissue throughout the body. Despite this promise, early heterogenous ADCs suffered from stability, pharmacokinetic, and efficacy issues that hindered clinical development. Recent advances in antibody engineering, linkers for drug-release, and chemical site-selective antibody conjugation have led to the creation of homogenous ADCs that have proven to be more efficacious than their heterogeneous predecessors both in vitro and in vivo. In this minireview, we focus on and discuss recent advances in chemical site-selective modification strategies for the conjugation of drugs to antibodies and the resulting potential for the development of a new generation of homogenous ADCs
    corecore