223 research outputs found

    A PSTOL-like gene, TaPSTOL, controls a number of agronomically important traits in wheat

    Get PDF
    Background Phosphorus (P) is an essential macronutrient for plant growth, and is required in large quantities by elite varieties of crops to maintain yields. Approximately 70% of global cultivated land suffers from P deficiency, and it has recently been estimated that worldwide P resources will be exhausted by the end of this century, increasing the demand for crops more efficient in their P usage. A greater understanding of how plants are able to maintain yield with lower P inputs is, therefore, highly desirable to both breeders and farmers. Here, we clone the wheat (Triticum aestivum L.) homologue of the rice PSTOL gene (OsPSTOL), and characterize its role in phosphate nutrition plus other agronomically important traits. Results TaPSTOL is a single copy gene located on the short arm of chromosome 5A, encoding a putative kinase protein, and shares a high level of sequence similarity to OsPSTOL. We re-sequenced TaPSTOL from 24 different wheat accessions and (3) three T. durum varieties. No sequence differences were detected in 26 of the accessions, whereas two indels were identified in the promoter region of one of the durum wheats. We characterised the expression of TaPSTOL under different P concentrations and demonstrated that the promoter was induced in root tips and hairs under P limiting conditions. Overexpression and RNAi silencing of TaPSTOL in transgenic wheat lines showed that there was a significant effect upon root biomass, flowering time independent of P treatment, tiller number and seed yield, correlating with the expression of TaPSTOL. However this did not increase PUE as elevated P concentration in the grain did not correspond to increased yields. Conclusions Manipulation of TaPSTOL expression in wheat shows it is responsible for many of the previously described phenotypic advantages as OsPSTOL except yield. Furthermore, we show TaPSTOL contributes to additional agronomically important traits including flowering time and grain size. Analysis of TaPSTOL sequences from a broad selection of wheat varieties, encompassing 91% of the genetic diversity in UK bread wheat, showed that there is very little genetic variation in this gene, which would suggest that this locus may have been under high selection pressure

    Residual effects of natural Zn chelates on navy bean response, Zn leaching and soil status

    Get PDF
    greenhouse experiment was conducted on weakly acidic and calcareous soils to evaluate the aging and residual effects of three natural organic Zn chelates [Zn-ethylenediaminedisuccinate (Zn-EDDS), Zn-polyhydroxyphenylcarboxylate and Zn-aminelignosulfonate] each administered in a single application to a first navy bean (Phaseolus vulgaris L.) crop at several different Zn application rates. In a second navy bean crop, we determined the following parameters: the extent of Zn leaching, the amount of available Zn remaining in soils, the amount of easily leachable Zn, the size of Zn fractions in soils, the pH and redox potential, the dry matter yield, and the soluble and total Zn concentrations in plants. The residual effect after 2 years of Zn fertilization mainly depended on the aging effect of Zn chelates and losses due to Zn leaching. The data relating to the evolution from the first to the second crop showed that the aging effect was noticeable in the calcareous soil. In the latter soil, the Zn-S,S-EDDS treatments showed greater decreases in the Zn uptake by plants than the other Zn treatments and the greatest Zn uptake by plants occurred when Zn was applied as Zn-aminelignosulfonate (10 mg Zn kg−1 rate, 6.85 mg Zn per lysimeter; 5 mg Zn kg−1 rate, 3.36 mg Zn per lysimeter). In contrast, in the calcareous soil, the maximum amount of Zn uptake, for the three chelates was 0.82 mg Zn per lysimeter. Consequently, a further application of Zn would be needed to prevent Zn deficiencies in the plants of a subsequent crop. The behaviour of the pH and Eh parameters in the soils and leachates did not depend on the natural Zn sources applied. In this study, the easily leachable Zn estimated by BaCl2 extraction was not adequate to predict Zn leaching from the soils in subsequent crops

    Dietary calcium and zinc deficiency risks are decreasing but remain prevalent

    Get PDF
    Globally, more than 800 million people are undernourished while >2 billion people have one or more chronic micronutrient deficiencies (MNDs). More than 6% of global mortality and morbidity burdens are associated with undernourishment and MNDs. Here we show that, in 2011, 3.5 and 1.1 billion people were at risk of calcium (Ca) and zinc (Zn) deficiency respectively due to inadequate dietary supply. The global mean dietary supply of Ca and Zn in 2011 was 684 ± 211 and 16 ± 3 mg capita−1 d−1 (±SD) respectively. Between 1992 and 2011, global risk of deficiency of Ca and Zn decreased from 76 to 51%, and 22 to 16%, respectively. Approximately 90% of those at risk of Ca and Zn deficiency in 2011 were in Africa and Asia. To our knowledge, these are the first global estimates of dietary Ca deficiency risks based on food supply. We conclude that continuing to reduce Ca and Zn deficiency risks through dietary diversification and food and agricultural interventions including fortification, crop breeding and use of micronutrient fertilisers will remain a significant challenge

    Chromium Stress Mitigation by Polyamine-Brassinosteroid Application Involves Phytohormonal and Physiological Strategies in Raphanus sativus L.

    Get PDF
    Brassinosteroids (BRs) and polyamines (PAs) are well-established growth regulators playing key roles in stress management among plants. In the present study, we evaluated the effects of epibrassinolide (EBL, an active BR) and spermidine (Spd, an active PA) on the tolerance of radish to oxidative stress induced by Cr (VI) metal. Our investigation aimed to study the impacts of EBL (10−9 M) and/or Spd (1 mM) on the biochemical and physiological responses of radish (Raphanus sativus L.) under Cr-stress. Applications of EBL and/or Spd were found to improve growth of Cr-stressed seedlings in terms of root length, shoot length and fresh weight. Our data also indicated that applications of EBL and Spd have significant impacts, particularly when applied together, on the endogenous titers of PAs, free and bound forms of IAA and ABA in seedlings treated with Cr-stress. Additionally, co-applications of EBL and Spd modulated more remarkably the titers of antioxidants (glutathione, ascorbic acid, proline, glycine betaine and total phenol) and activities of antioxidant enzymes (guaicol peroxidase, catalase, superoxide dismutase and glutathione reductase) in Cr-stressed plants than their individual applications. Attenuation of Cr-stress by EBL and/or Spd (more efficient with EBL and Spd combination) was also supported by enhanced values of stress indices, such as phytochelatins, photosynthetic pigments and total soluble sugars, and reduction in malondialdehyde and H2O2 levels in Cr-treated seedlings. Diminution of ROS production and enhanced ROS scavenging capacities were also noted for EBL and/or Spd under Cr-stress. However, no significant reduction in Cr uptake was observed for co-application of EBL and Spd when compared to their individual treatments in Cr-stressed seedlings. Taken together, our results demonstrate that co-applications of EBL and Spd are more effective than their independent treatments in lowering the Cr-induced oxidative stress in radish, leading to improved growth of radish seedlings under Cr-stress

    New broad-spectrum resistance to septoria tritici blotch derived from synthetic hexaploid wheat

    Get PDF
    Septoria tritici blotch (STB), caused by the ascomycete Mycosphaerella graminicola, is one of the most devastating foliar diseases of wheat. We screened five synthetic hexaploid wheats (SHs), 13 wheat varieties that represent the differential set of cultivars and two susceptible checks with a global set of 20 isolates and discovered exceptionally broad STB resistance in SHs. Subsequent development and analyses of recombinant inbred lines (RILs) from a cross between the SH M3 and the highly susceptible bread wheat cv. Kulm revealed two novel resistance loci on chromosomes 3D and 5A. The 3D resistance was expressed in the seedling and adult plant stages, and it controlled necrosis (N) and pycnidia (P) development as well as the latency periods of these parameters. This locus, which is closely linked to the microsatellite marker Xgwm494, was tentatively designated Stb16q and explained from 41 to 71% of the phenotypic variation at seedling stage and 28–31% in mature plants. The resistance locus on chromosome 5A was specifically expressed in the adult plant stage, associated with SSR marker Xhbg247, explained 12–32% of the variation in disease, was designated Stb17, and is the first unambiguously identified and named QTL for adult plant resistance to M. graminicola. Our results confirm that common wheat progenitors might be a rich source of new Stb resistance genes/QTLs that can be deployed in commercial breeding programs

    Analysis of positional candidate genes in the AAA1 susceptibility locus for abdominal aortic aneurysms on chromosome 19

    Get PDF
    ABSTRACT: BACKGROUND: Abdominal aortic aneurysm (AAA) is a complex disorder with multiple genetic risk factors. Using affected relative pair linkage analysis, we previously identified an AAA susceptibility locus on chromosome 19q13. This locus has been designated as the AAA1 susceptibility locus in the Online Mendelian Inheritance in Man (OMIM) database. METHODS: Nine candidate genes were selected from the AAA1 locus based on their function, as well as mRNA expression levels in the aorta. A sample of 394 cases and 419 controls was genotyped for 41 SNPs located in or around the selected nine candidate genes using the Illumina GoldenGate platform. Single marker and haplotype analyses were performed. Three genes (CEBPG, PEPD and CD22) were selected for DNA sequencing based on the association study results, and exonic regions were analyzed. Immunohistochemical staining of aortic tissue sections from AAA and control individuals was carried out for the CD22 and PEPD proteins with specific antibodies. RESULTS: Several SNPs were nominally associated with AAA (p < 0.05). The SNPs with most significant p-values were located near the CCAAT enhancer binding protein (CEBPG), peptidase D (PEPD), and CD22. Haplotype analysis found a nominally associated 5-SNP haplotype in the CEBPG/PEPD locus, as well as a nominally associated 2-SNP haplotype in the CD22 locus. DNA sequencing of the coding regions revealed no variation in CEBPG. Seven sequence variants were identified in PEPD, including three not present in the NCBI SNP (dbSNP) database. Sequencing of all 14 exons of CD22 identified 20 sequence variants, five of which were in the coding region and six were in the 3'-untranslated region. Five variants were not present in dbSNP. Immunohistochemical staining for CD22 revealed protein expression in lymphocytes present in the aneurysmal aortic wall only and no detectable expression in control aorta. PEPD protein was expressed in fibroblasts and myofibroblasts in the media-adventitia border in both aneurysmal and non-aneurysmal tissue samples. CONCLUSIONS: Association testing of the functional positional candidate genes on the AAA1 locus on chromosome 19q13 demonstrated nominal association in three genes. PEPD and CD22 were considered the most promising candidate genes for altering AAA risk, based on gene function, association evidence, gene expression, and protein expression

    Impact of Bacillus Calmette-Guérin (BCG) vaccination on postoperative mortality in patients with perioperative SARS-CoV-2 infection

    Get PDF
    There is little evidence around the potentially protective role of previous Bacillus Calmette-Guerin (BCG) vaccination on postoperative mortality in patients with perioperative SARS-CoV-2 vaccination. Prior BCG vaccination did not protect SARS-CoV-2 infected patients against postoperative pulmonary complications and 30-day mortality
    corecore