2 research outputs found

    Data processing of high-rate low-voltage distribution grid recordings for smart grid monitoring and analysis

    Get PDF
    Power networks will change from a rigid hierarchic architecture to dynamic interconnected smart grids. In traditional power grids, the frequency is the controlled quantity to maintain supply and load power balance. Thereby, high rotating mass inertia ensures for stability. In the future, system stability will have to rely more on real-time measurements and sophisticated control, especially when integrating fluctuating renewable power sources or high-load consumers like electrical vehicles to the low-voltage distribution grid. In the present contribution, we describe a data processing network for the in-house developed low-voltage, high-rate measurement devices called electrical data recorder (EDR). These capture units are capable of sending the full high-rate acquisition data for permanent storage in a large-scale database. The EDR network is specifically designed to serve for reliable and secured transport of large data, live performance monitoring, and deep data mining. We integrate dedicated different interfaces for statistical evaluation, big data queries, comparative analysis, and data integrity tests in order to provide a wide range of useful post-processing methods for smart grid analysis. We implemented the developed EDR network architecture for high-rate measurement data processing and management at different locations in the power grid of our Institute. The system runs stable and successfully collects data since several years. The results of the implemented evaluation functionalities show the feasibility of the implemented methods for signal processing, in view of enhanced smart grid operation. © 2015, Maaß et al.; licensee Springer

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore