13 research outputs found

    Identification of a strong contamination source for graphene in vacuum systems

    Full text link
    To minimize parasitic doping effects caused by uncontrolled material adsorption, graphene is often investigated under vacuum. Here we report an entirely unexpected phenomenon occurring in vacuum systems, namely strong n-doping of graphene due to chemical species generated by common ion high-vacuum gauges. The effect --reversible upon exposing graphene to air-- is significant, as doping rates can largely exceed 10^{12} cm^{-2}/hour, depending on pressure and the relative position of the gauge and the graphene device. It is important to be aware of the phenomenon, as its basic manifestation can be mistakenly interpreted as vacuum-induced desorption of p-dopants.Comment: 10 pages, 4 figure

    The Maunakea Spectroscopic Explorer Book 2018

    Full text link
    (Abridged) This is the Maunakea Spectroscopic Explorer 2018 book. It is intended as a concise reference guide to all aspects of the scientific and technical design of MSE, for the international astronomy and engineering communities, and related agencies. The current version is a status report of MSE's science goals and their practical implementation, following the System Conceptual Design Review, held in January 2018. MSE is a planned 10-m class, wide-field, optical and near-infrared facility, designed to enable transformative science, while filling a critical missing gap in the emerging international network of large-scale astronomical facilities. MSE is completely dedicated to multi-object spectroscopy of samples of between thousands and millions of astrophysical objects. It will lead the world in this arena, due to its unique design capabilities: it will boast a large (11.25 m) aperture and wide (1.52 sq. degree) field of view; it will have the capabilities to observe at a wide range of spectral resolutions, from R2500 to R40,000, with massive multiplexing (4332 spectra per exposure, with all spectral resolutions available at all times), and an on-target observing efficiency of more than 80%. MSE will unveil the composition and dynamics of the faint Universe and is designed to excel at precision studies of faint astrophysical phenomena. It will also provide critical follow-up for multi-wavelength imaging surveys, such as those of the Large Synoptic Survey Telescope, Gaia, Euclid, the Wide Field Infrared Survey Telescope, the Square Kilometre Array, and the Next Generation Very Large Array.Comment: 5 chapters, 160 pages, 107 figure

    Electronic transport in individual carbon nanotubes under extreme conditions

    No full text
    Cette thèse a pour objet l'étude des propriétés de transport électronique des nanotubes de carbone soumis à des pressions hydrostatiques de l'ordre du gigapascal. L'originalité de ce travail réside dans le fait d'étudier ces propriétés sur des nanotubes individuels. Ceci permet de simplifier la géométrie du système et de faire apparaître des comportements propres à chaque type de nanotubes. Le cas d'un nanotube multifeuillets composé d'un tube externe à faible bande interdite et d'un tube interne métallique a permis d'observer i) l'évolution sous pression de la barrière de Schottky aux contacts or-nanotube, ii) l'évolution de la résistance inter-feuillet, mettant en évidence une transition associée au changement de section du nanotube, iii) la diminution de l'hystérésis en tension de grille. D'autre part, une étude systématique sur des nanotubes métalliques permet de faire ressortir un comportement général pour le contact or-nanotube sous pression, indépendant de la chiralité du nanotube et du milieu transmetteur de pression. Nombre de ces effets peuvent être utilisés pour des applications électroniques ou électro-mécaniques, tels que des capteurs de pression miniatures et environ dix fois plus sensibles que certains standards actuels. Un modèle simple de calculs par la méthode des liaisons fortes est aussi mis en œuvre afin de prédire l'évolution des propriétés électroniques des nanotubes de carbone sous pression en fonction de leur chiralité. Ce modèle permet de prédire d'autres phénomènes qui pourraient être observés grâce à une étude approfondie et systématique utilisant la méthode expérimentale développée au cours de cette thèseThis thesis focuses on the electronic transport properties of carbon nanotubes under hydrostatic pressures as high as one gigapascal. The originality of this work is the study of these properties on individual nanotubes. This simplifies the geometry of the system and allows studying the behaviour of each type of nanotubes. The case of a multiwalled nanotube made of at least an external semiconducting tube and an internal metallic one led us to observe i) a pressure induced change of the Schottky barrier at the gold-nanotube contacts, ii) a evolution of the intershell resistance, featuring a transition associated to the change of the nanotube cross section, iii) the decrease of the gate voltage hysteresis. Additionally, a systematic study on metallic nanotubes allowed pointing out a general behaviour of the gold-nanotube contact under pressure, which is independent on the nanotube chirality and on the pressure transmitting medium. Many of these effects can be useful to design electronic or electro-mechanical devices, such as miniature pressure sensors that would be about ten times more sensitive than some of today's standards. A simple tight-binding model is also applied to predict the evolution of the carbon nanotube electronic properties under pressure with respect to their chirality. This model allows predicting other phenomena, which could be observed in the context of a deeper and systematic study using the experimental method that was developed in this thesis

    Transport électronique dans les nanotubes de carbone individuels sous conditions extrêmes

    No full text
    This thesis focuses on the electronic transport properties of carbon nanotubes under hydrostatic pressures as high as one gigapascal. The originality of this work is the study of these properties on individual nanotubes. This simplifies the geometry of the system and allows studying the behaviour of each type of nanotubes. The case of a multiwalled nanotube made of at least an external semiconducting tube and an internal metallic one led us to observe i) a pressure induced change of the Schottky barrier at the gold-nanotube contacts, ii) a evolution of the intershell resistance, featuring a transition associated to the change of the nanotube cross section, iii) the decrease of the gate voltage hysteresis. Additionally, a systematic study on metallic nanotubes allowed pointing out a general behaviour of the gold-nanotube contact under pressure, which is independent on the nanotube chirality and on the pressure transmitting medium. Many of these effects can be useful to design electronic or electro-mechanical devices, such as miniature pressure sensors that would be about ten times more sensitive than some of today's standards. A simple tight-binding model is also applied to predict the evolution of the carbon nanotube electronic properties under pressure with respect to their chirality. This model allows predicting other phenomena, which could be observed in the context of a deeper and systematic study using the experimental method that was developed in this thesis.Cette thèse a pour objet l'étude des propriétés de transport électronique des nanotubes de carbone soumis à des pressions hydrostatiques de l'ordre du gigapascal. L'originalité de ce travail réside dans le fait d'étudier ces propriétés sur des nanotubes individuels. Ceci permet de simplifier la géométrie du système et de faire apparaître des comportements propres à chaque type de nanotubes. Le cas d'un nanotube multifeuillets composé d'un tube externe à faible bande interdite et d'un tube interne métallique a permis d'observer i) l'évolution sous pression de la barrière de Schottky aux contacts or-nanotube, ii) l'évolution de la résistance inter-feuillet, mettant en évidence une transition associée au changement de section du nanotube, iii) la diminution de l'hystérésis en tension de grille. D'autre part, une étude systématique sur des nanotubes métalliques permet de faire ressortir un comportement général pour le contact or-nanotube sous pression, indépendant de la chiralité du nanotube et du milieu transmetteur de pression. Nombre de ces effets peuvent être utilisés pour des applications électroniques ou électro-mécaniques, tels que des capteurs de pression miniatures et environ dix fois plus sensibles que certains standards actuels. Un modèle simple de calculs par la méthode des liaisons fortes est aussi mis en œuvre afin de prédire l'évolution des propriétés électroniques des nanotubes de carbone sous pression en fonction de leur chiralité. Ce modèle permet de prédire d'autres phénomènes qui pourraient être observés grâce à une étude approfondie et systématique utilisant la méthode expérimentale développée au cours de cette thèse
    corecore