85 research outputs found

    Precision of single-qubit gates based on Raman transitions

    Full text link
    We analyze the achievable precision for single-qubit gates that are based on Raman transitions between two near-degenerate ground states via a virtually excited state. In particular, we study the errors due to non-perfect adiabaticity and due to spontaneous emission from the excited state. For the case of non-adabaticity, we calculate the error as a function of the dimensionless parameter χ=Δτ\chi=\Delta \tau, where Δ\Delta is the detuning of the Raman beams and τ\tau is the gate time. For the case of spontaneous emission, we give an analytical argument that the gate errors are approximately equal to Λγ/Δ\Lambda \gamma/\Delta, where Λ\Lambda is the rotation angle of the one-qubit gate and γ\gamma is the spontaneous decay rate, and we show numerically that this estimate holds to good approximation.Comment: 8 pages, 10 figure

    Semiconductor microcavities for enhanced nonlinear optics interactions

    Get PDF
    Semiconductor microcavities offer a unique way to enhance nonlinear optical processes through light confinement in space and time. In this article we review two different nonlinear optics semiconductor-based applications that benefit from the microcavity setting. Firstly, we discuss a difference frequency generation scheme in a GaAs microdisk. Secondly, we show how a recently demonstrated source of counter-propagating twin photons can display an appreciable performance improvement when combined with a vertical cavity

    Quantum Impurity Entanglement

    Full text link
    Entanglement in J_1-J_2, S=1/2 quantum spin chains with an impurity is studied using analytic methods as well as large scale numerical density matrix renormalization group methods. The entanglement is investigated in terms of the von Neumann entropy, S=-Tr rho_A log rho_A, for a sub-system A of size r of the chain. The impurity contribution to the uniform part of the entanglement entropy, S_{imp}, is defined and analyzed in detail in both the gapless, J_2 <= J_2^c, as well as the dimerized phase, J_2>J_2^c, of the model. This quantum impurity model is in the universality class of the single channel Kondo model and it is shown that in a quite universal way the presence of the impurity in the gapless phase, J_2 <= J_2^c, gives rise to a large length scale, xi_K, associated with the screening of the impurity, the size of the Kondo screening cloud. The universality of Kondo physics then implies scaling of the form S_{imp}(r/xi_K,r/R) for a system of size R. Numerical results are presented clearly demonstrating this scaling. At the critical point, J_2^c, an analytic Fermi liquid picture is developed and analytic results are obtained both at T=0 and T>0. In the dimerized phase an appealing picure of the entanglement is developed in terms of a thin soliton (TS) ansatz and the notions of impurity valence bonds (IVB) and single particle entanglement (SPE) are introduced. The TS-ansatz permits a variational calculation of the complete entanglement in the dimerized phase that appears to be exact in the thermodynamic limit at the Majumdar-Ghosh point, J_2=J_1/2, and surprisingly precise even close to the critical point J_2^c. In appendices the relation between the finite temperature entanglement entropy, S(T), and the thermal entropy, S_{th}(T), is discussed and and calculated at the MG-point using the TS-ansatz.Comment: 62 pages, 27 figures, JSTAT macro

    Rab7A Is Required for Efficient Production of Infectious HIV-1

    Get PDF
    Retroviruses take advantage of cellular trafficking machineries to assemble and release new infectious particles. Rab proteins regulate specific steps in intracellular membrane trafficking by recruiting tethering, docking and fusion factors, as well as the actin- and microtubule-based motor proteins that facilitate vesicle traffic. Using virological tests and RNA interference targeting Rab proteins, we demonstrate that the late endosome-associated Rab7A is required for HIV-1 propagation. Analysis of the late steps of the HIV infection cycle shows that Rab7A regulates Env processing, the incorporation of mature Env glycoproteins into viral particles and HIV-1 infectivity. We also show that siRNA-mediated Rab7A depletion induces a BST2/Tetherin phenotype on HIV-1 release. BST2/Tetherin is a restriction factor that impedes HIV-1 release by tethering mature virus particles to the plasma membrane. Our results suggest that Rab7A contributes to the mechanism by which Vpu counteracts the restriction factor BST2/Tetherin and rescues HIV-1 release. Altogether, our results highlight new roles for a major regulator of the late endocytic pathway, Rab7A, in the late stages of the HIV-1 replication cycle

    The LHCb upgrade I

    Get PDF
    The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software

    High temperature sulfidation of pack-tantalized iron

    No full text
    The tantalization of iron in a pack containing Ta, CrF2 and alumina leads to a duplex coating containing TaFe + TaFe2 in the internal part and nearly pure Ta containing iron in the external part. The kinetics of tantalization are parabolic due to the limitation by a gas phase diffusional mechanism. Tantalized iron samples were submitted to flowing Ar-H2S mixtures at temperatures between 500 and 700 °C and the kinetics followed continuously with a magnetic suspension balance. Due to the very low sulfidation rates, great care was taken to the amount of residual H2O in the sulfidizing gas. The formed product was always FeS, with no evidence of Ta sulfide(s). This compound was shown to grow by outward transport of Fe from the bulk through the Ta-rich external layer of the coating. The kinetics exhibit a first decreasing rate period followed by a constant rate regime. A mode1 of diffusion-reaction explains correctly the experimental results. The decreasing rate period corresponds to transitory effects leading to steady state boundary condition where the rate law becomes linear. Calculated curves fit correctly the experimental results and reaction and diffusion data are derived
    • …
    corecore