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Semiconductor microcavities offer a unique way to enhance nonlinear optical processes through light confinement in space and time.
In this article we review two different nonlinear optics semiconductor-based applications that benefit from the microcavity setting.
Firstly, we discuss a difference frequency generation scheme in a GaAs microdisk. Secondly, we show how a recently demonstrated
source of counter-propagating twin photons can display a sensible performance improvement when combined with a vertical cavity.
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1 INTRODUCTION

Since the birth of nonlinear optics, optical resonators have
been regarded as a promising way to enhance nonlinear in-
teractions. This is simply due to the fact that a strong energy
buildup in small volumes can significantly reduce the thresh-
old needed to trigger nonlinear phenomena. With the devel-
opment of nanoscale fabrication techniques, it is now possible
to confine photons in structured microcavities of a few cubic
microns, and store them for a considerable amount of time.
In these devices, the spatial confinement is typically quanti-
fied by the mode volume VM, whereas the temporal confine-
ment is described by the quality factor Q, which relates the
energy E stored in the cavity to the energy ∆E lost in a cycle:
Q = 2 π E/∆E.

For these reasons, a considerable amount of research was de-
voted to the study and optimization of small volume and
high-Q microcavities. High quality photonic crystal (PhC) res-
onators, for example, have proved to be very effective in ob-
taining ultra-low-power optical bistable switching, Second-
Harmonic Generation (SHG), and in modifying the nonlinear
susceptibility of materials through the Purcell effect [1].

Another interesting approach relies on Whispering Gallery
Mode (WGM) resonators such as microspheres [2] and mi-
crodisks [3]. In this case the light is guided by the bent dielec-
tric/air interface and, by interfering constructively with itself

at resonance, gives rise to an intensity build-up. This geome-
try allows to reach a very high storage time: e. g. quality factor
as high as Q = 5× 106 and Q = 3.6× 105 have been reported
at telecom wavelengths in Si [4] and AlGaAs [5] microdisks,
respectively.

In this paper, we discuss two microcavity-based nonlinear op-
tics applications: 1) a Difference Frequency Generation (DFG)
between phase-matched WGMs in a GaAs microdisk; 2) the
optimization of a recently demonstrated source of counter-
propagating twin photons [6].

In both cases, the semiconductor technology is a key factor in
terms of compactness and integration potential.

2 WGMS MICROCAVITIES

WGM resonators are well known optoelectronic components
and their use as semiconductor lasers [3] or add-drop filters
[7] is well established. In nonlinear optics, χ(3) processes have
also been extensively studied in dielectric materials: for ex-
ample, ultralow-threshold Raman laser using a silica micro-
sphere [8], or Kerr induced parametric oscillation [9] in a silica
microtoroid.

Conversely, the exploitation of χ(2) interactions between
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WGMs has been much less explored so far. The first WGM-
based SHG proposal was done in 2003 by Ilchenko and
coworkers [10]. They subsequently demonstrated their device
using a toroidal PPLN cavity [11] and, more recently, obtained
non-degenerate parametric oscillation in an unpoled LiNbO3
disk [12].

In this context, GaAs microdisks promise peculiar advantages
like: a mature semiconductor technology for a fully optoelec-
tronic integration; a large refractive index for strong field con-
finement; and a huge nonlinear coefficient that can be ex-
ploited to obtain high efficiencies. To date, the only draw-
back in the choice of GaAs was its optical isotropy, but this
problem can be overcome following the theoretical analysis
reported in [13, 14]. In those works, the authors show that
the symmetry of a [100]-grown AlGaAs microdisk results in a
periodic modulation of the effective nonlinear coefficient ex-
perienced by nonlinearly interacting WGMs. Specifically, they
address a SHG process, where this modulation is used to ob-
tain a hybrid modal/quasi-phase-matching scheme. The key
issue of this approach is that it does not rely on material pe-
riodic domain inversion. The same approach, combined with
two bus waveguides side-coupled to an AlGaAs microring,
also promises to enhance the Spontaneous Parametric Down
Conversion (SPDC) in order to generate spatially separated
entangled photons [15].

Here we extend these analyses to the case of a DFG scheme
in the wavelength range between 2.5 and 2.9 µm, as a possi-
ble alternative to GaInAsSb/AlGaAsSb quantum-well lasers
for room-temperature, continuous-wave spectroscopic appli-
cations [16]. In this section, after reviewing the linear and
nonlinear properties of WGMs resonators, we design a triply-
resonant GaAs microdisk with optimized performances (Sec-
tion 2.3).

2.1 Linear Theory of WGMs Resonators

Let us briefly outline the method that we use to find the res-
onance frequencies of a microdisk cavity similar to the one
showed in Figure 1.

In our model, the vertical structure is taken into account
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FIG. 1 Microdisk of radius R and thickness h. The cylindrical reference system used in

the text is shown.

through the Effective Index Method (EIM): we first find the
effective index of the vertical structure (nα with α = TE/TM)
and then replace the 3D structure with a simpler 2D disk
whose refractive index equals the effective index found in
the previous step. By doing this, it is straightforward to ver-
ify that Maxwell’s equations split into two sets of uncoupled
equations for TE and TM modes. For a TM mode, the electric
field is polarized orthogonal to the microdisk plane and the
only non-zero magnetic field components are Hρ and Hθ . For
a TE mode, conversely, the magnetic field only possesses the
x component whereas the electric field lies in the plane of the
cavity. In both cases the wave equation is simply:

d2ψ

dρ2 +
1
ρ

dψ

dρ
+

(
n2k̃2 − m2

ρ2

)
ψ = 0 , (1)

where n = nα inside the microdisk and n = 1 outside, k̃ is
the wavenumber, the integer m is the azimuthal number (i.e.
the number of wavelengths that fits the circumference) and
ψ = Ex (ψ = Hx) for TM (TE) modes.

Eq. (1) can be solved in terms of Bessel (Jm) and Hankel (H(2)
m )

functions of order m:

ψ =


N Jm(k̃ nα ρ) e−j m θ+j ω̃ t ρ ≤ R

N B H(2)
m (k̃ ρ) e−j m θ+j ω̃ t ρ > R ,

(2)

where N is a normalization constant, R is the microdisk ra-
dius, ω̃ = k̃c, and B = Jm(k̃ nα R)/H(2)

m (k̃ R) [17].

The continuity of tangential E and H results in the dispersion
relations:

nTM
J̇m(k̃ nTM R)
Jm(k̃ nTM R)

− Ḣ(2)
m (k̃ R)

H(2)
m (k̃ R)

= 0 (TM modes), (3)

J̇m(k̃ nTE R)
Jm(k̃ nTE R)

− nTE
Ḣ(2)

m (k̃ R)

H(2)
m (k̃ R)

= 0 (TE modes). (4)

Eqs. (3) and (4) can be numerically solved to find the reso-
nance eigenfrequencies ω̃ of the cavity: once that the wave-
length and the azimuthal order m are fixed, different reso-
nances can be found, corresponding to radial order p. The
lowest frequency mode corresponds to p = 0, whereas higher
frequency modes have higher p values.

It is worth noting that, despite the formal analogy with the op-
tical slab waveguide case, the eigenfrequencies obtained here
are complex numbers. This results from the curved device ge-
ometry: since the disk has a bent boundary, all its resonances
are affected by radiation losses. These losses can be quanti-
fied by defining the resonance quality factor of a mode as
QWGM = Re (ω̃)/(2Im (ω̃)).

In conclusion, the resonances of a microdisk can be labeled by
using three “quantum” numbers: the vertical order q, which
accounts for the vertical confinement1; the azimuthal order m,
which expresses the mode rotational symmetry; and the radial
order p, which accounts for the mode radial profile.

1Throughout the rest of the paper we will always consider the fundamen-
tal vertical mode, that is q = 0.
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2.2 Nonlinear Frequency Mixing Between
WGMs

If the microdisk material possesses sufficiently high χ(2), two
pump modes injected into the cavity can generate another
mode at the difference frequency. This DFG scheme is illus-
trated in Figure 2: two pump fields, with frequencies corre-
sponding to two microdisk’s eigenfrequencies (ω1 and ω2),
are injected in a tapered fiber evanescently coupled to the
cavity [18]. There, the nonlinear polarization is a source for
a third mode at ω3 = ω1 − ω2; if this mode corresponds to a
microdisk resonance, an efficient frequency mixing process is
possible.

2

1

λ3

λ1

λ2

FIG. 2 Coupling scheme for the DFG process. Two pump fields are injected through

fiber 1, whose distance to the disk is optimized to maximize the coupling. Fiber 2

allows an efficient extraction of the generated mode.

Using standard Coupled Mode Theory (CMT), we can write
simple equations describing the nonlinear process [19]:

da1

dt
= jω1a1 −

a1

τtot
1

+
√

2

τ
cpl
1

s1 + sNL
1

da2

dt
= jω2a2 −

a2

τtot
2

+
√

2

τ
cpl
2

s2 + sNL
2 (5)

da3

dt
= jω3a3 −

a3

τtot
3

+ sNL
3 .

For the ith resonant mode (i = 1, 2, 3), ai is the mode ampli-
tude normalized to the energy, τtot

i = 2Qtot
i /ωi is the pho-

ton lifetime (including intrinsic and coupling losses) and sNL
i

is the nonlinear source term normalized to the power. More-
over, in the first two equations, the terms s1 and s2 describe
the sourcing from fiber 1, and are normalized to the power.

In the following, we will put ourselves in the undepleted
pump approximation by neglecting sNL

1 and sNL
2 . In this way,

by putting ai = Aiejωit (i = 1, 2) and looking for the steady
state solution of the first two equations in (5), we find:

|Ai|2 =
4

ωi

Qcpl
i

(1 + Qcpl
i /Qint

i )2
Pin

i (for i = 1,2) , (6)

where Pin
i is the fiber input power, Qcpl

i is the loss term due to
the presence of the coupling to the fiber, Qint

i accounts for all
the intrinsic loss mechanisms, and 1/Qtot = 1/Qint + 1/Qcpl .
In particular, Qint

i has contributions from: bending losses
(what we previously defined as QWGM), material absorption
losses, nonlinear (intensity dependent) absorption losses, sur-
face losses etc. From Eq. (6) we see that the transfer of power

from the fiber to the cavity is maximized when the condition
Qcpl

i = Qint
i is fulfilled (critical coupling). This condition can

be achieved by properly adjusting the distance fiber-resonator.

On the other hand, the last of Eqs. (5) still contains the term
sNL

3 , which is given by [19]:

sNL
3 = − jω3

4
ε0 a1 a∗2

×
∫

V
∑
ijk

χ
(2)
ijk (ω3; ω1,−ω2) E∗i (ω3) Ej(ω1) E∗k (ω2) dV

= − jω3

4
ε0 a1 a∗2 Iovl , (7)

with V the cavity volume. This equation expresses the fact that
the nonlinear source term responsible of the intra-cavity gen-
eration of the mode at ω3 is essentially an overlap integral be-
tween the three resonant modes multiplied by the χ(2) tensor.

Since GaAs has the zincblende structure with 4̄3m symmetry
[20] and we are considering the growth axis oriented in the
[100] direction, the overlap integral and the nonlinear polar-
ization differ from zero in two cases: 1) two TE pump modes
and a TM output; 2) two orthogonally polarized pump modes
and a TE output. The argument of the overlap integral in
Eq. (7) can be written as:

d14

{
C̄+ ej(m2+m3−m1+2)θ + C̄− ej(m2+m3−m1−2)θ

}
,

where C̄+ and C̄− depend on the profiles of the modes in-
volved in the DFG. Then it is clear that the source term sNL

3 is
always zero unless the following conditions are fulfilled:

ω3 = ω1 −ω2 (Energy Conservation),

∆m = m2 + m3 −m1 ± 2 = 0 (Momentum Conservation).

These conditions generalize what was found in [13, 14] for the
case of a SHG process: the±2 is due to the additional momen-
tum provided by the periodic modulation of the χ(2) tensor
that results from the circular geometry.

Returning to Eqs. (5) and taking a3 = A3e−jω3t, we readily
find the steady-state solution:

A3

τtot
3

= − jω3

4
ε0 A1 A∗2 Iovl . (8)

Since the power at ω3 coupled to fiber 2 is given by Pout
3 =∣∣∣∣√2/τ

cpl
3 A3

∣∣∣∣2
, the energy circulating inside the cavity is re-

lated to the incident power through Eq. (6) and under the hy-
pothesis of critical coupling for both the pumps and the DF
mode, we have:

Pout
3 =

1
16

Qint
1 Qint

2 Qint
3

ω3

ω1ω2
ε2

0 | Iov |2 Pin
1 Pin

2 ,

which gives the conversion efficiency:

η =
Pout

3

Pin
1

=
1
16

Qint
1 Qint

2 Qint
3

ω3

ω1ω2
ε2

0 | Iov |2 Pin
2 . (9)

Therefore, at critical coupling, the conversion efficiency is di-
rectly related to the time that the WGMs spend within the
cavity: a higher Q-factor results in a longer interaction time
between the fields involved in the nonlinear mixing.

08030- 3



Journal of the European Optical Society - Rapid Publications 3, 08030 (2008) A. Andronico, et. al.

2.3 Results and Discussion
In order to generate light in the wavelength band 2.5− 2.9 µm,
we have designed a GaAs disk with radius R = 3.7 µm
and thickness h = 1.8 µm. By doing so, two DFG interac-
tions can be phase matched: 1) with two TE pump modes
at λ1 = 0.983 µm and λ2 = 1.567 µm, and a TM output at
λ3 = 2.639 µm; 2) with a TE pump mode at λ1 = 0.973 µm,
a TM pump mode at λ2 = 1.533 µm, and a TE output at
λ3 = 2.658 µm.

As suggested above, the two inputs and the output of the mi-
crodisk are evanescently coupled to two optical fibers, which
fulfill the critical-coupling condition. Under such hypothesis,
for fiber input powers of 1 mW and Qint = 3× 104, the pre-
dicted efficiencies are η1 = 4.6× 10−4 and η2 = 4.4× 10−4.
These values depend on the nonlinear overlap integral of the
three interacting modes, which is related to the radial mode
profiles as shown in Eq. (7). An example of these profiles is
shown in Figure 3 for the case of two TE pump modes and a
TM output.
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FIG. 3 Profiles of the WGMs involved in the first DFG described in the text. The two

pump fields are TE polarized, whereas the intra-cavity generated mode is TM polarized.

By properly adjusting the microdisk radius and thickness,
triplets of phase-matched wavelengths could be found, which
nicely cover a DFG wavelength range from λ3 = 2.5 µm to
λ3 = 2.9 µm. With a view to a feasible experiment, this DFG
process could be obtained with pump wavelength ranges λ1 ∈
[0.98, 0.99] µm and λ2 ∈ [1.56, 1.57] µm, readily available from
a Ti:Sapphire and an external-cavity telecom semiconductor
laser, respectively.

Clearly, the wavelength of the generated mode depends on the
disk fabrication tolerances (± 10 nm on both R and t). In order
to illustrate this point, we numerically explored the depen-
dence of the phase-matched triplet of wavelengths on radius
variations around R = 3.7 µm (with fixed h = 1.8 µm), and
reported such dependence in Figure 4 for λ3 and λ1. Here it
is shown that a small error on the microdisk radius only pro-
duces a slight shift of the phase-matched WGM wavelengths.
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FIG. 4 Dependence of the pump (λ1) and intra-cavity generated mode wavelength (λ3)

on small radius variations around the nominal value R0 = 3.7 µm. The conversion

efficiency is nearly the same (η ≈ 5× 10−4) in the whole tolerance interval.

3 RIDGE MICROCAVITIES
Semiconductor microcavities based on Distributed Bragg Re-
flectors (DBR) have been extensively studied in the past years
due to their strong impact on applications and light matter in-
teractions. Among the photonic devices based on these kind
of cavities, we can cite VCSELs [21], light-emitting diodes and
nonlinear optical switches. In the context of fundamental re-
search, the strong coupling between exciton and photonic cav-
ity mode is an intense field of study in this moment [22].

In all of these cases, light is strongly confined in one or, by
additional lateral patterning, more dimensions, like in ridge
microcavities (2D confinement) [23] or micropillars (3D con-
finement) [24].

The field enhancement induced by the cavity can also be used
to increase the efficiency in three wave mixing processes such
as SHG or SPDC. In this context we can mention several works
concerning a “transverse pump configuration”, where one of
the interacting beams is parallel to the cavity axis and orthog-
onal to the other ones [25, 26]. The first experimental demon-
stration of this kind of interactions has been an SHG experi-
ment with a ridge microcavity [27].

It has also been proposed to use SPDC in the transverse
pump configuration, in order to realize a counter-propagating
twin photon source [28], and the corresponding experimental
demonstration has been reported in [6]. Several advantages
arise from this geometry: automatic separation of the down-
converted photons, large tunability, narrow spectral band-
width. Moreover, frequency correlated, anticorrelated or even
uncorrelated two-photon states can be generated by an appro-
priate control of the spatial and spectral pump field properties
[29].

Thereafter we first illustrate the working principle of the
source; then we show the effect of adding a vertical micro-
cavity on the conversion efficiency.
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3.1 A source of counter-propagating twin
photons: basic idea

The twin-photon source presented here is a multilayer Al-
GaAs waveguide designed to allow a counter-propagating
phase matching scheme. The lateral confinement is provided
by a wet-etched ridge. In this geometry (Figure 5), a pump
field (780 nm) impinges on top of the waveguide generat-
ing two counter-propagating, orthogonally polarized waveg-
uided twin photons (≈ 1560 nm) through SPDC. The fre-
quencies of the emitted fields are fixed by the energy (ωp =
ωs + ωi) and momentum (kp sin θ = nsks − niki) conserva-
tion, where ωp, ωs and ωi (kp, ks and ki) are the frequencies
(wavevectors) of pump, idler and signal; θ is the angle of in-
cidence of the pump beam, and ns and ni are the effective in-
dices of the signal and idler modes.

FIG. 5 Schematic of the presented semiconductor twin photon source. The generated

signal and idler photons are guided, counter-propagating and orthogonally polarized.

The pump beam is incident with an angle θ. The longer the waveguide, the narrower

the spectral bandwidth of the down-converted photons.

Momentum conservation in the epitaxial direction is satisfied
by alternating AlGaAs layers with different Al concentration.

The conversion efficiency of the source, defined as the number
of photon pairs per pump photon, is [30]:

η0 =
Npairs

Np
=

2h̄ωsωiωp

ε0c2nsni

0.886
b

|Γ|2

W cos θ
, (10)

where W is the width of the waveguide, b = 1/v(s)
g + 1/v(i)

g
is the sum of the inverse group velocities of signal and idler
modes, and Γ is the overlap integral given by:

Γ =
∫ ∫

de f f Ep(x, y)Es(x, y)Ei(x, y) dxdy , (11)

with de f f the effective nonlinear coefficient. In this expression,
Es, Ei, Ep are the signal, idler and pump electric fields, which
are appropriately normalized. Several frequency conversion
processes have been experimentally demonstrated with this
source: SHG [30], DFG [31], and SPDC [6]. In the last case, a
time-correlation experiment demonstrated the twin character
of the generated photons. The measured conversion efficiency
is very close to the theoretical value η0 = 1.5 × 10−13 for a
3 µm wide waveguide. This low value stems from the the un-
guided character of the pump.

An interesting possibility to improve the source performances
consists in the addition of DBRs on top of and under the
waveguide, in order to create a microcavity for the pump
beam. In this case, at resonance wavelength, a nearly stand-
ing wave is obtained inside the cavity, whose amplitude can
be largely greater than outside.

3.2 Eff ic iency enhancement through the
vert ical microcavity

In the case of the simple waveguide presented above, the
guided field amplitude of the pump beam can be roughly es-
timated using the Fresnel equations. Assuming, for the sake
of simplicity, a homogeneous waveguide with refractive in-
dex nguide and air as incident medium, the relation between
the internal and external pump field is Eint

p = tEext
p with

|t| = 2nAir/(nAir + nguide).

In the case of the ridge microcavity showed in Figure 6, we
can use the transfer matrix method to compute the amplitude
of the standing wave inside the cavity. This is found to be:

Eint
p

Eext
p

= 2

√
2nAirF

πnguide(1 + |t2/t1|)
. (12)

Here, F ≡ π
√

R
1−R is the finesse of the cavity, with R = |r1r2|; r1

and r2 (t1 and t2) are the reflection (transmission) coefficients
associated to the front (i = 1) and back (i = 2) mirrors. It can
be shown that the conversion efficiency enhancement factor
due to the addition of the microcavity is:

ηcavity

η0
=

2(nAir + nguide)2

πnAirnguide

F
(1 + |t2/t1|)

. (13)

This expression indicates how to optimize the conversion effi-
ciency. Firstly, the ratio |t2/t1| has to be minimized, reflecting
the obvious fact that the front mirror should be less reflective

FIG. 6 View in the (xz) plane of the waveguide with the addition of the DBRs. In black

is plotted the pump beam profile within the structure at cavity resonance. The field

enhancement induces a strong improvement of the conversion efficiency.
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than the back one, in order to let the light enter the microcav-
ity. Secondly, a maximum finesse is desired. It is interesting,
for the rest of the discussion, to introduce the quality factor of
the cavity: Q = me f f F. Here, me f f is the effective order of the
cavity, given by me f f = m + m0, where m is the cavity order
and m0 accounts for the penetration of the field in the DBR.
For a λ/4 DBR stack, m0 = nH/(nH − nL), where nH and nL
are the refractive indices of the high- and low-index materials.
Eq. (13) shows that the higher the quality factor, the higher the
efficiency.

However, a practical limitation on Q stems from technical rea-
sons. Firstly, the large amount of energy stored in the cavity
can possibly induce thermorefractive effects, leading to unde-
sirably bistable devices. Moreover, the inhomogeneity of the
sample inherent to the growth process induces a variation of
the cavity resonance wavelength λ along the direction of the
waveguide. To obtain an efficient interaction throughout the
structure, this variation has to be smaller than the mean cavity
linewidth δλ. This, in return, sets an upper limit to the desired
quality factor, expressed as Q = λ

δλ .

3.3 Discussion

The previous analysis demonstrates that the quality factor
should be limited to avoid spurious effects. In these condi-
tions, aiming at a maximized finesse, and consequently max-
imized conversion efficiency, leads to the minimization of the
effective order me f f of the cavity.

Alternative solutions are being presently envisaged and will
be published elsewhere. Nevertheless, an estimation of the
possible efficiency enhancement can be given: a reasonable
linewidth of δλ = 0.5 nm and an effective cavity order me f f =
10, along with symmetric mirrors, gives a finesse F = 300 and
an efficiency enhancement factor: ηcavity/η0 = 500.

4 CONCLUSION

In this paper, we discussed two nonlinear optical applications
under the perspective of exploiting the microcavity field en-
hancement to increase the efficiency of a nonlinear parametric
process. This step was accomplished by designing, in the first
case, an high-Q triply resonant microdisk for DFG and, in the
second, an optimized ridge cavity for the generation of twin-
photons. Both these applications benefit from the advantages
provided by the choice of GaAs in terms of strong confine-
ment, huge χ(2) and mature semiconductor technology.
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