8,109 research outputs found

    A Lambda CDM bounce scenario

    Get PDF
    We study a contracting universe composed of cold dark matter and radiation, and with a positive cosmological constant. As is well known from standard cosmological perturbation theory, under the assumption of initial quantum vacuum fluctuations the Fourier modes of the comoving curvature perturbation that exit the (sound) Hubble radius in such a contracting universe at a time of matter-domination will be nearly scale-invariant. Furthermore, the modes that exit the (sound) Hubble radius when the effective equation of state is slightly negative due to the cosmological constant will have a slight red tilt, in agreement with observations. We assume that loop quantum cosmology captures the correct high-curvature dynamics of the space-time, and this ensures that the big-bang singularity is resolved and is replaced by a bounce. We calculate the evolution of the perturbations through the bounce and find that they remain nearly scale-invariant. We also show that the amplitude of the scalar perturbations in this cosmology depends on a combination of the sound speed of cold dark matter, the Hubble rate in the contracting branch at the time of equality of the energy densities of cold dark matter and radiation, and the curvature scale that the loop quantum cosmology bounce occurs at. Finally, for a small sound speed of cold dark matter, this scenario predicts a small tensor-to-scalar ratio

    An Efficient Molecular Dynamics Scheme for Predicting Dopant Implant Profiles in Semiconductors

    Full text link
    We present a highly efficient molecular dynamics scheme for calculating the concentration profile of dopants implanted in group-IV alloy, and III-V zinc blende structure materials. Our program incorporates methods for reducing computational overhead, plus a rare event algorithm to give statistical accuracy over several orders of magnitude change in the dopant concentration. The code uses a molecular dynamics (MD) model, instead of the binary collision approximation (BCA) used in implant simulators such as TRIM and Marlowe, to describe ion-target interactions. Atomic interactions are described by a combination of `many-body' and screened Coulomb potentials. Inelastic energy loss is accounted for using a Firsov model, and electronic stopping is described by a Brandt-Kitagawa model which contains the single adjustable parameter for the entire scheme. Thus, the program is easily extensible to new ion-target combinations with the minimum of tuning, and is predictive over a wide range of implant energies and angles. The scheme is especially suited for calculating profiles due to low energy, large angle implants, and for situations where a predictive capability is required with the minimum of experimental validation. We give examples of using our code to calculate concentration profiles and 2D `point response' profiles of dopants in crystalline silicon, silicon-germanium blends, and gallium-arsenide. We can predict the experimental profile over five orders of magnitude for and channeling and for non-channeling implants at energies up to hundreds of keV.Comment: 10 pages, 7 figures. Proceedings of COSIRES98. Accepted for publication in Nucl. Instrum. and Meth. B. See http://bifrost.lanl.gov/~reed

    Bouncing cosmologies with dark matter and dark energy

    Get PDF
    We review matter bounce scenarios where the matter content is dark matter and dark energy. These cosmologies predict a nearly scale-invariant power spectrum with a slightly red tilt for scalar perturbations and a small tensor-to-scalar ratio. Importantly, these models predict a positive running of the scalar index, contrary to the predictions of the simplest inflationary and ekpyrotic models, and hence could potentially be falsified by future observations. We also review how bouncing cosmological space-times can arise in theories where either the Einstein equations are modified or where matter fields that violate the null energy condition are included.Comment: 16 pages, 1 figure, v2: Discussion extended and clarifications added. Invited review for special edition of Univers

    Mindfulness and Well-Being: A Mixed Methods Study of Bilingual Guided Meditation In Higher Education

    Get PDF
    This mixed-methods study investigated the acceptability and outcomes of a mindful approach to teaching a foreign language in higher education institutions. The approach included Bilingual Guided Meditation (BGM®) in the classroom to reduce students’ anxiety and foster a positive mindset. The BGM program combines bilingual positive suggestions with guided meditation and relaxing background music. Results indicated that the BGM may reduce anxiety and can improve academic performance
    • …
    corecore