5,325 research outputs found

    Nucleation and growth of single wall carbon nanotubes

    Get PDF
    The nucleation and growth of single wall carbon nanotubes from a carbon-saturated catalytic particle surrounded by a single sheet of graphene is described qualitatively by using a very restricted number of elementary processes, namely Stone-Wales defects and carbon bi-interstitials. Energies of the different configurations are estimated by using a Tersoff energy minimization scheme. Such a description is compatible with a broad variety of size or helicity of the tubes. Several mechanisms of growth of the embryos are considered: one of them is made more favourable when the tubes embryos are arranged in an hexagonal network in the graphene plane. All the proposed mechanisms can be indefinitely repeated for the growth of the nanotubes.Comment: Solid state communications, in pres

    Gravity-Yang-Mills-Higgs unification by enlarging the gauge group

    Full text link
    We revisit an old idea that gravity can be unified with Yang-Mills theory by enlarging the gauge group of gravity formulated as gauge theory. Our starting point is an action that describes a generally covariant gauge theory for a group G. The Minkowski background breaks the gauge group by selecting in it a preferred gravitational SU(2) subgroup. We expand the action around this background and find the spectrum of linearized theory to consist of the usual gravitons plus Yang-Mills fields charged under the centralizer of the SU(2) in G. In addition, there is a set of Higgs fields that are charged both under the gravitational and Yang-Mills subgroups. These fields are generically massive and interact with both gravity and Yang-Mills sector in the standard way. The arising interaction of the Yang-Mills sector with gravity is also standard. Parameters such as the Yang-Mills coupling constant and Higgs mass arise from the potential function defining the theory. Both are realistic in the sense explained in the paper.Comment: 61 pages, no figures (v2) some typos correcte

    Enhancing the heavy Higgs signal with jet-jet profile cuts

    Full text link
    The jet-jet profile, or detailed manner, in which transverse energy and mass are distributed around the jet-jet system resulting from the hadronic decay of a ZZ boson in the process HiggsZZ\to ZZ at a proton-proton collider energy of 40\tev is carefully examined. Two observables are defined that can be used to help distinguish the +\ell^+\ell^--jet-jet signal from Higgs decay from the ``ordinary'' QCD background arising from the large transverse momentum production of single ZZ bosons plus the associated jets. By making cuts on these observables, signal to background enhancement factors greater than 100100 can be obtained.Comment: 16 pages, Univ. Florida IFT-93-

    Sivers and Boer-Mulders functions in Light-Cone Quark Models

    Get PDF
    Results for the naive-time-reversal-odd quark distributions in a light-cone quark model are presented. The final-state interaction effects are generated via single-gluon exchange mechanism. The formalism of light-cone wave functions is used to derive general expressions in terms of overlap of wave-function amplitudes describing the different orbital angular momentum components of the nucleon. In particular, the model predictions show a dominant contribution from S- and P-wave interference in the Sivers function and a significant contribution also from the interference of P and D waves in the Boer-Mulders function. The favourable comparison with existing phenomenological parametrizations motivates further applications to describe azimuthal asymmetries in hadronic reactions.Comment: references and explanations added; version to appear in Phys. Rev.

    Full one-loop electroweak radiative corrections to single Higgs production in e+ e-

    Get PDF
    We present the full O(α){{\cal O}}(\alpha) electroweak radiative corrections to single Higgs production in \epemt. This takes into account the full one-loop corrections as well as the effects of hard photon radiation. We include both the fusion and Higgs-strahlung processes. The computation is performed with the help of {\tt GRACE-loop} where we have implemented a generalised non-linear gauge fixing condition. The latter includes 5 gauge parameters that can be used for checks on our results. Besides the UV, IR finiteness and gauge parameter independence checks it proves also powerful to test our implementation of the 5-point function. We find that for a 500GeV machine and a light Higgs of mass 150GeV, the total O(α){{\cal O}}(\alpha) correction is small when the results are expressed in terms of αQED\alpha_{{\rm QED}}. The total correction decreases slightly for higher energies. For moderate centre of mass energies the total O(α){{\cal O}}(\alpha) decreases as the Higgs mass increases, reaching -10% for MH=350M_H=350GeV and s=500\sqrt{s}=500GeV. In order to quantify the genuine weak corrections we have subtracted the universal virtual and bremsstrahlung correction from the full O(α){{\cal O}}(\alpha). We find, for MH=150M_H=150GeV, a weak correction slowly decreasing from -2% to -4% as the energy increases from s=300\sqrt{s}=300GeV to s=1\sqrt{s}=1TeV after expressing the tree-level results in terms of GμG_\muComment: 16 pages, 3 figures. Only correction is a reference to a web-pag

    Dynamics of Phase Transitions: The 3D 3-state Potts model

    Full text link
    In studies of the QCD deconfining phase transition or cross-over by means of heavy ion experiments, one ought to be concerned about non-equilibrium effects due to heating and cooling of the system. In this paper we extend our previous study of Glauber dynamics of 2D Potts models to the 3D 3-state Potts model, which serves as an effective model for some QCD properties. We investigate the linear theory of spinodal decomposition in some detail. It describes the early time evolution of the 3D model under a quench from the disordered into the ordered phase well, but fails in 2D. Further, the quench leads to competing vacuum domains, which are difficult to equilibrate, even in the presence of a small external magnetic field. From our hysteresis study we find, as before, a dynamics dominated by spinodal decomposition. There is evidence that some effects survive in the case of a cross-over. But the infinite volume extrapolation is difficult to control, even with lattices as large as 1203120^3.Comment: 12 pages; added references, corrected typo

    Evapotranspiration Based Irrigation Trials Examine Water Requirement, Nitrogen Use, and Yield of Romaine Lettuce in the Salinas Valley

    Get PDF
    Cool season vegetables require adequate soil moisture to assure that maximum yield and quality are achieved. On California’s central coast, where the majority of cool season vegetables are produced in the US, long-term overpumping of irrigation water has reduced groundwater levels and led to environmental degradation. Two evapotranspiration (ET) based irrigation field trials were performed near Salinas CA (USA) to determine if ET-based irrigation scheduling could conserve water while producing romaine lettuce (cv. Sun Valley) of commercially viable yield. Sprinklers were used for seed germination and crop establishment. Four drip irrigation treatments were then imposed using a randomized complete block design with six replications. The CropManage decision-support model was used to estimate the full (100%) crop water requirement based mainly on ET replacement. Other treatments included 50% 75% and 150% of the full water requirement. The 100% treatment received 185 mm of water in 2015 and 247 mm in 2016, both of which were well below prior guidance and grower reports. Yields from the 100% and 150% treatments were not significantly different and were similar to industry average, while yields were significantly lower for the 50% and 75% treatments. The 100% treatment had the highest water use efficiency, and the 100% and 150% treatments together had the highest nitrogen recovery efficiency. Irrigation of romaine near the 100% ET replacement level can potentially reduce environmental impacts associated with nitrate leaching and surface runoff

    Glauber dynamics of phase transitions: SU(3) lattice gauge theory

    Full text link
    Motivated by questions about the QCD deconfining phase transition, we studied in two previous papers Model A (Glauber) dynamics of 2D and 3D Potts models, focusing on structure factor evolution under heating (heating in the gauge theory notation, i.e., cooling of the spin systems). In the present paper we set for 3D Potts models (Ising and 3-state) the scale of the dynamical effects by comparing to equilibrium results at first and second order phase transition temperatures, obtained by re-weighting from a multicanonical ensemble. Our finding is that the dynamics entirely overwhelms the critical and non-critical equilibrium effects. In the second half of the paper we extend our results by investigating the Glauber dynamics of pure SU(3) lattice gauge on NτNσ3N_{\tau} N_{\sigma}^3 lattices directly under heating quenches from the confined into the deconfined regime. The exponential growth factors of the initial response are calculated, which give Debye screening mass estimates. The quench leads to competing vacuum domains of distinct Z3Z_3 triality, which delay equilibration of pure gauge theory forever, while their role in full QCD remains a subtle question. As in spin systems we find for pure SU(3) gauge theory a dynamical growth of structure factors, reaching maxima which scale approximately with the volume of the system, before settling down to equilibrium. Their influence on various observables is studied and different lattice sizes are simulated to illustrate an approach to a finite volume continuum limit. Strong correlations are found during the dynamical process, but not in the deconfined phase at equilibrium.Comment: 12 pages, 18 figure

    POD for optimal control of the Cahn-Hilliard system using spatially adapted snapshots

    Full text link
    The present work considers the optimal control of a convective Cahn-Hilliard system, where the control enters through the velocity in the transport term. We prove the existence of a solution to the considered optimal control problem. For an efficient numerical solution, the expensive high-dimensional PDE systems are replaced by reduced-order models utilizing proper orthogonal decomposition (POD-ROM). The POD modes are computed from snapshots which are solutions of the governing equations which are discretized utilizing adaptive finite elements. The numerical tests show that the use of POD-ROM combined with spatially adapted snapshots leads to large speedup factors compared with a high-fidelity finite element optimization

    The Symplectic Penrose Kite

    Get PDF
    The purpose of this article is to view the Penrose kite from the perspective of symplectic geometry.Comment: 24 pages, 7 figures, minor changes in last version, to appear in Comm. Math. Phys
    corecore