The Owl Nebula is a triple-shell planetary nebula with the outermost shell
being a faint bow-shaped halo. We have obtained deep narrow-band images and
high-dispersion echelle spectra in the H-alpha, [O III], and [N II] emission
lines to determine the physical structure of each shell in the nebula. These
spatio-kinematic data allow us to rule out hydrodynamic models that can
reproduce only the nebular morphology. Our analysis shows that the inner shell
of the main nebula is slightly elongated with a bipolar cavity along its major
axis, the outer nebula is a filled envelope co-expanding with the inner shell
at 40 km/s, and the halo has been braked by the interstellar medium as the Owl
Nebula moves through it. To explain the morphology and kinematics of the Owl
Nebula, we suggest the following scenario for its formation and evolution. The
early mass loss at the TP-AGB phase forms the halo, and the superwind at the
end of the AGB phase forms the main nebula. The subsequent fast stellar wind
compressed the superwind to form the inner shell and excavated an elongated
cavity at the center, but has ceased in the past. At the current old age, the
inner shell is backfilling the central cavity.Comment: 10 pages, 6 figures, 1 table, to appear in the Astronomical Journa