11 research outputs found

    Sleep Is a Refreshing Process: An fNIRS Study

    Get PDF
    Sleep is a very critical process that constitutes up to one third of daytime of a healthy adult. It is known to be an active period where body and brain is refreshed for the next day. It is both part of a larger cycle, i.e., circadian rhythm, and has subcsycles in it, i.e., sleep stages. Although hemodynamics of these stages have been investigated especially in the last two decades, there are still points in the hemodynamics to be illuminated especially in terms of refreshment. This study aims to investigate refreshing property of sleep in terms of sleep stages using functional near-infrared spectroscopy (fNIRS) for measuring prefrontal cortex (PFC) hemodynamics. Nine healthy subjects slept in sleep laboratories, monitored by polysomnography and fNIRS before, during, and after night sleep. REM stage had lower oxyhemoglobin (HbO) and total hemoglobin (HbT) than the other sleep stages and wakefulness. Deoxyhemoglobin (HbR) did not differ between any stages. All sleep stages and wakefulness stage at the end of the sleep had higher HbO and lower HbR than the beginning of the sleep. HbT levels did not differ between the beginning and the end of the sleep for any stages. During REM sleep, PFC seems to get lower blood supply, possibly due to increased demand in other brain regions. Regardless of the stage, PFC has higher oxygenation toward the end of sleep, indicating refreshment. Overall, our brain seems to be on duty during sleep throughout the night for “cleaning” and “refreshing” itself. Hemodynamic changes from the beginning to end of sleep might be the indicator of this work. Thus, accordingly REM stage seems to be at a central point for this work

    Indistinguishable odour enantiomers: Differences between peripheral and central-nervous electrophysiological responses

    Get PDF
    The ability of humans to discriminate enantiomeric odour pairs is substance –specific. Current literature suggests that psychophysical discrimination of odour enantiomers mainly depends on the peripheral processing at the level of the olfactory sensory neurons (OSN). To study the influence of central processing in discrimination, we investigated differences in the electrophysiological responses to psychophysically indistinguishable (+)- and (−)- rose oxide enantiomers at peripheral and central-nervous levels in humans. We recorded the electro-olfactogram (EOG) from the olfactory epithelium and the EEG-derived olfactory event-related potentials (OERP). Results from a psychophysical three alternative forced choice test indicated indistinguishability of the two odour enantiomers. In a total of 19 young participants EOG could be recorded in 74 and OERP in 95% of subjects. Significantly different EOG amplitudes and latencies were recorded in response to the 2 stimuli. However, no such differences in amplitude or latency emerged for the OERP. In conclusion, although the pair of enantiomer could be discriminated at a peripheral level this did not lead to a central-nervous/cognitive differentiation of the two stimuli

    The Effects of Virtual Reality Nonphysical Mental Training on Balance Skills and Functional Near-Infrared Spectroscopy Activity in Healthy Adults

    No full text
    Context: Athletic skills such as balance are considered physical skills. However, these skills may not just improve by physical training, but also by mental training. The purpose of this study was to investigate the effects of mental training programs on balance skills and hemodynamic responses of the prefrontal cortex. Design: Randomized controlled trial. Methods: Fifty-seven healthy adults (28 females. 29 males), aged between 18-25 years, participated in this study. Participants were randomly assigned to 3 groups: virtual reality mental training (VRMT) group, conventional mental training (CMT) group, and control group. The training program included action observation and motor imagery practices with balance exercise videos. The VRMT group trained with a VR head-mounted display, while the CMT group trained with a non-immersive computer screen, for 30 minutes. 3 days per week for 4 weeks. At baseline and after 4 weeks of training, balance was investigated with stabilometry and Star Excursion Balance Test (SEBT). Balance tests were performed with simultaneous functional near-infrared spectroscopy (fNIRS) imaging to measure prefrontal cortex oxygenation. Results: For the stabilometry test, at least 1 variable improved significantly in both VRMT and CMT groups but not in the control group. For SEBT, composite reach distance significantly increased in both VRMT and CMT groups but significantly decreased in the control group. For separate directional scores, reach distance was significantly increased in both mental training groups for nondominant leg posterolateral and posteromedial directions, and dominant leg posterolateral direction, while nondominant posteromedial score was significantly increased only in the VRMT group. Between-group comparisons showed that dominant leg posteromedial and posterolateral score improvements were significantly higher than control group for both mental training groups, while nondominant leg improvements were significantly higher than control group only for the VRMT group. The fNIRS oxyhemoglobin levels were not significantly changed during stabilometry tests. However. oxyhemoglobin levels significantly reduced only in the control group during SEBT. Conclusions: Our findings suggest that both mental training interventions can significantly improve balance test results. Additionally, VRMT may have some advantages over CMT. These findings are promising for the use of mental training in prevention and rehabilitation for special populations such as athletes and older adults.Ege University Scientific Research Projects Coordination Unit [TTU-2019-20828]; GoPro Fusion VR Camera and Oculus Go VR headsetsThe authors would like to thank Dr Timur Kose and Semiha Ozgul for their aid in statistical analysis. This study was funded by the Ege University Scientific Research Projects Coordination Unit (project no. TTU-2019-20828). GoPro Fusion VR Camera and Oculus Go VR headsets were provided by this fund

    Investigation of the Effects of Intermittent and Continuous Exercise Methods on Cognitive Functions, Risk Taking, Working Memory and Attention

    No full text
    WOS: 000453220100007[18-TIP-039]This study was conducted within the scope of Ege University Scientific Research Project No. 18-TIP-03
    corecore