53 research outputs found

    Photoinduced Intervalence Charge Transfers: Spectroscopic Tools to Study Fundamental Phenomena and Applications

    Get PDF
    The exploitation of excited state chemistry for solar energy conversion or photocatalysis has been continuously increasing, and the needs of a transition to a sustainable human development indicate this trend will continue. In this scenario, the study of mixed valence systems in the excited state offers a unique opportunity to explore excited state electron transfer reactivity, and, in a broader sense, excited state chemistry. This Concept article analyzes recent contributions in the field of photoinduced mixed valence systems, i. e. those where the mixed valence core is absent in the ground state but created upon light absorption. The focus is on the utilization of photoinduced intervalence charge transfer bands, detected via transient absorption spectroscopy, as key tools to study fundamental phenomena like donor/acceptor inversion, hole delocalization, coexistence of excited states and excited state nature, together with applications in molecular electronics.Fil: Ramirez Wierzbicki, Ivana Elizabeth. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; ArgentinaFil: Cotic, Agustina Ludmila. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; ArgentinaFil: Cadranel, Alejandro. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; Argentin

    Where’s the Spin? A DFT Study of Mixed-Valence Cyanide-Bridged Ruthenium Polypyridines

    Get PDF
    This article discusses the use of density functional theory (DFT) calculations in classifying and characterizing bimetallic ruthenium mixed-valence systems in terms of their electronic localization/ delocalization degree. A standard B3LYP/LanL2DZ methodology including integral equation formalism-polarizable continuum model (IEF-PCM) solvent model is evaluated for a set of 16 nonsymmetric mixed-valence cyanide-bridged ruthenium polypyridines. This procedure reproduces well the features of the observed electronic and vibrational spectra, with better agreement for the more delocalized systems, and therefore provides an appropriate description of the electronic structures. Computed spin densities support class II or class III Robin-Day assignments and allow to quantify the electronic delocalization degree. The applied methodology yields good results due to the nature of the systems explored, which display a strong electronic coupling promoted by the cyanide-bridge and a lack of strong specific solvation effects. This procedure is not only useful in the study of ground state mixed-valence systems, but also provides a powerful insight into photoinduced mixed-valence excited states of related complexes.Fil: Pieslinger, German Eduardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂ­mica InorgĂĄnica, AnalĂ­tica y QuĂ­mica FĂ­sica; ArgentinaFil: Cadranel, Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂ­mica InorgĂĄnica, AnalĂ­tica y QuĂ­mica FĂ­sica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; Argentina. Universitat Erlangen Nuremberg; AlemaniaFil: Baraldo Victorica, Luis Mario. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂ­mica InorgĂĄnica, AnalĂ­tica y QuĂ­mica FĂ­sica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; Argentin

    The Excited‐State Creutz‐Taube Ion

    Get PDF
    The excited-state version of the Creutz–Taube ion was prepared via visible light excitation of [(NH3)5RuII(ÎŒ-pz)RuII(NH3)5]4+. The resulting excited state is a mixed valence {RuIII–ή(ÎŒ-pz⋅−)RuII+ÎŽ} transient species, which was characterized using femtosecond transient absorption spectroscopy with vis-NIR detection. Very intense photoinduced intervalence charge transfers were observed at 7500 cm−1, revealing an excited-state electronic coupling element HDA=3750 cm−1. DFT calculations confirm a strongly delocalized excited state. A notable consequence of strong electron delocalization is the nanosecond excited state lifetime, which was exploited in a proof-of-concept intermolecular electron transfer. The excited-state Creutz–Taube ion is established as a reference, and demonstrates that electron delocalization in the excited state can be leveraged for artificial photosynthesis or other photocatalytic schemes based on electron transfer chemistry.Fil: Pieslinger, German Eduardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas; ArgentinaFil: Ramirez Wierzbicki, Ivana Elizabeth. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; ArgentinaFil: Cadranel, Alejandro. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; Argentin

    Carbon Nanodots for Charge-Transfer Processes

    Get PDF
    In recent years, carbon nanodots (CNDs) have emerged as an environmentally friendly, biocompatible, and inexpensive class of material, whose features sparked interest for a wide range of applications. Most notable is their photoactivity, as exemplified by their strong luminescence. Consequently, CNDs are currently being investigated as active components in photocatalysis, sensing, and optoelectronics. Chargetransfer interactions are common to all these areas. It is therefore essential to be able to fine-tune both the electronic structure of CNDs and the electronic communication in CND-based functional materials. The complex, but not completely deciphered, structure of CNDs necessitates, however, a multifaceted strategy to investigate their fundamental electronic structure and to establish structure−property relationships. Such investigations require a combination of spectroscopic methods, such as ultrafast transient absorption and fluorescence up-conversion techniques, electrochemistry, and modeling of CNDs, both in the absence and presence of other photoactive materials. Only a sound understanding of the dynamics of charge transfer, charge shift, charge transport, etc., with and without light makes much-needed improvements in, for example, photocatalytic processes, in which CNDs are used as either photosensitizers or catalytic centers, possible. This Account addresses the structural, photophysical, and electrochemical properties of CNDs, in general, and the chargetransfer chemistry of CNDs, in particular. Pressure-synthesized CNDs (pCNDs), for which citric acid and urea are used as inexpensive and biobased precursor materials, lie at the center of attention. A simple microwave-assisted thermolytic reaction, performed in sealed vessels, yields pCNDs with a fairly homogeneous size distribution of ∌1−2 nm. The narrow and excitationindependent photoluminescence of pCNDs contrasts with that seen in CNDs synthesized by other techniques, making pCNDs optimal for in-depth physicochemical analyses. The atomistic and electronic structures of CNDs were also analyzed by quantum chemical modeling approaches that led to a range of possible structures, ranging from heavily functionalized, graphene-like structures to disordered amorphous particles containing small sp2 domains. Both the electron-accepting and -donating performances of CNDs make the charge-transfer chemistry of CNDs rather versatile. Both covalent and noncovalent synthetic approaches have been explored, resulting in architectures of various sizes. CNDs, for example, have been combined with molecular materials ranging from electron-donating porphyrins and extended tetrathiafulvalenes to electron-accepting perylendiimides, or nanocarbon materials such as polymer-wrapped single-walled carbon nanotubes. In every case, charge-separated states formed as part of the reaction cascades initiated by photoexcitation. Charge-transfer assemblies including CNDs have also played a role in technological applications: for example, a proof-ofconcept dye-sensitized solar cell was designed and tested, in which CNDs were adsorbed on the surface of mesoporous anatase TiO2. The wide range of reported electron-donor−acceptor systems documents the versatility of CNDs as molecular building blocks, whose electronic properties are tunable for the needs of emerging technologies.Fil: Cadranel, Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂ­mica InorgĂĄnica, AnalĂ­tica y QuĂ­mica FĂ­sica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; ArgentinaFil: Margraf, Johannes T.. Technische Universitat MĂŒnchen; AlemaniaFil: Strauss, Volker. No especifĂ­ca;Fil: Clark, Timothy. Universitat Erlangen-Nuremberg; AlemaniaFil: Guldi, Dirk M.. Universitat Erlangen-Nuremberg; Alemani

    Symmetry‐Breaking Charge‐Transfer Chromophore Interactions Supported by Carbon Nanodots

    Get PDF
    Carbon dots (CDs) and their derivatives are useful platforms for studying electron-donor/acceptor interactions and dynamics therein. Herein, we couple amorphous CDs with phthalocyanines (Pcs) that act as electron donors with a large extended p-surface and intense absorption across the visible range of the solar spectrum. Investigations of the intercomponent interactions by means of steady-state and pump-probe transient absorption spectroscopy reveal symmetry-breaking charge transfer/separation and recombination dynamics within pairs of phthalocyanines. The CDs facilitate the electronic interactions between the phthalocyanines. Thus, our findings suggest that CDs could be used to support electronic couplings in multichromophoric systems and further increase their applicability in organic electronics, photonics, and artificial photosynthesisFil: Cacioppo, Michele. UniversitĂ  degli Studi di Trieste; ItaliaFil: Scharl, Tobias. Universitat Erlangen-Nuremberg; AlemaniaFil: Dordevic, Luka. UniversitĂ  degli Studi di Trieste; ItaliaFil: Cadranel, Alejandro. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; ArgentinaFil: Arcudi, Francesca. UniversitĂ  degli Studi di Trieste; ItaliaFil: Guldi, Dirk. Universitat Erlangen-Nuremberg; AlemaniaFil: Prato, Maurizio. UniversitĂ  degli Studi di Trieste; Itali

    Coexistence of MLCT Excited States of Different Symmetry upon Photoexcitation of a Single Molecular Species

    Get PDF
    Photoexcitation of [Ru(tpy)(bpy)(ÎŒ-CN)Ru(py) 4 Cl] 2+ ([RuRu] 2+ ) at 387 nm results in the population of two 3 MLCT excited states of different symmetry that coexist on the nanosecond scale. Common to both states is an excited electron in a tpy-based orbital. Their configuration differs in the position of the hole. In one excited state, 3 MLCTz, the hole sits in an orbital parallel to the intermetallic axis allowing for a strong metal-metal electronic interaction. As a result, 3 MLCTz is highly delocalized over both metal centers and shows an intense photoinduced intervalence charge transfer (PIIVCT) NIR signature. In the other excited state, 3 MLCTxy, the hole is localized in an orbital perpendicular to the intermetallic axis and hence, significant intermetallic coupling is absent. This state shows no PIIVCT in the NIR and its spectrum is very similar to the one observed for the monometallic [Ru(tpy)(bpy)(CN)] + reference. Both 3 MLCT excited states have nanosecond lifetimes. The intervening energy barrier for a hole reconfiguration between the two different 3 MLCT excited states offers the opportunity to exploit wave functions of different symmetry before either the interconversion between them or the decay to the ground state is operative.Fil: Oviedo, Paola Soledad. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; ArgentinaFil: Pieslinger, German Eduardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; ArgentinaFil: Baraldo Victorica, Luis Mario. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; ArgentinaFil: Cadranel, Alejandro. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; Argentina. Universitat Erlangen-Nuremberg; AlemaniaFil: Guldi, Dirk M.. Universitat Erlangen-Nuremberg; Alemani

    Photon- and Charge-Management in Advanced Energy Materials: Combining 0D, 1D, and 2D Nanocarbons as well as Bulk Semiconductors with Organic Chromophores

    Get PDF
    In this contribution, seminal works in the area of photon- and charge-management are highlighted with focus on covalent electron donor-acceptor conjugates built around porphyrins (Ps), on one hand, and 0D, 1D, and 2D nanocarbons, on the other hand. Photons in these conjugates are managed by Ps, while 0D, 1D, and 2D nanocarbons serve as the active component, which enable managing charges. With a few leading examples, it can be explored much beyond the simple photon- and charge-management characterization and emphasize photovoltaics and photocatalysis to convert and store energy. This contribution concludes by highlighting recent progress in mixing and matching the unique charge-management features of nanocarbons in the design of multidimensional nanocarbons.Fil: Cadranel, Alejandro. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂ­mica InorgĂĄnica, AnalĂ­tica y QuĂ­mica FĂ­sica; Argentina. Universitat Erlangen-Nuremberg; AlemaniaFil: Haines, Philipp. Universitat Erlangen-Nuremberg; AlemaniaFil: Kaur, Ramandeep. Universitat Erlangen-Nuremberg; AlemaniaFil: Menon, Arjun. Universitat Erlangen-Nuremberg; AlemaniaFil: MĂŒnich, Peter W.. Universitat Erlangen-Nuremberg; AlemaniaFil: Schol, Peter R.. Universitat Erlangen-Nuremberg; AlemaniaFil: Guldi, Dirk. Universitat Erlangen-Nuremberg; Alemani

    Ping‐pong energy transfer in covalently linked porphyrin‐MoS2 architectures

    Get PDF
    Molybdenum disulfide nanosheets covalently modified with porphyrin were prepared and fully characterized. Neither the porphyrin absorption nor its fluorescence was notably affected by covalent linkage to MoS2. The use of transient absorption spectroscopy showed that a complex ping‐pong energy‐transfer mechanism, namely from the porphyrin to MoS2 and back to the porphyrin, operated. This study reveals the potential of transition‐metal dichalcogenides in photosensitization processes.This project has received funding from EC H2020 under the Marie Sklodowska‐Curie grant agreement No. 642742. HRSTEM and EELS studies were conducted at the Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Spain. R.A. gratefully acknowledges support from the Spanish Ministry of Economy and Competitiveness (MINECO) through project grant MAT2016‐79776‐P (AEI/FEDER, UE) and from EC H2020 programs “Graphene Flagship” (785219), FLAG‐ERA—“GATES” (JTC‐PCI2018‐093137) and “ESTEEM3” (823717). R.A. also acknowledges Government of Aragon under the project “Construyendo Europa desde Aragon” 2014‐2020 (grant number E13_17R).Peer reviewe

    Emissive Cyanide-Bridged Bimetallic Compounds as Building Blocks for Polymeric Antennae

    Get PDF
    A series of cyanide-bridged bimetallic compounds of the general formula [Ru(L)(bpy)(ÎŒ-NC)(M)]2−/−/2+ (L = tpy, 2,2'-6',2''-terpyridine, or tpm, tris(1-pyrazolyl)methane, bpy = 2,2'-bipyridine, M = RuII(CN)5, OsIII(CN)5, OsII(CN)5, RuII(py)4(CN), py = pyridine) have been synthesized and fully characterized. Most of them present MLCT emission (λ = 690-730 nm, Ί = 10−3-10−4) and their photophysical properties resemble the ones of the respective mononuclear Ru(L)(bpy) species. The exception is when M is OsIII(CN)5, where an intramolecular electron transfer quenching mechanism is proposed. The conditions that should be met for avoiding the reductive or oxidative quenching of the excited state are also discussed.Fil: Cadranel, Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂ­mica InorgĂĄnica, AnalĂ­tica y Quimica Fisica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; ArgentinaFil: Aramburu Troselj, Bruno MartĂ­n. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de Los Materiales, Medioambiente y EnergĂ­a; Argentina. Universidad de Buenos Aires; ArgentinaFil: Yamazaki, Shiori. University Of Florida. Department of Chemistry; Estados UnidosFil: AlborĂ©s, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂ­mica InorgĂĄnica, AnalĂ­tica y Quimica Fisica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; ArgentinaFil: Kleiman, Valeria. University Of Florida. Department of Chemistry; Estados UnidosFil: Baraldo Victorica, Luis Mario. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂ­mica InorgĂĄnica, AnalĂ­tica y Quimica Fisica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; Argentin

    Inversion of donor-acceptor roles in photoinduced intervalence charge transfers

    Get PDF
    Upon MLCT photoexcitation, {(tpy)Ru} becomes the electron acceptor in the mixed valence {(tpy-)RuIII-ÎŽ-NC-MII+ÎŽ} moiety, reversing its role as the electron donor in the ground-state mixed valence analogue. Photoinduced mixed valence interactions can be tuned to obtain extended lifetimes and higher emission quantum yields, beneficial in supramolecular energy conversion schemes.Fil: Aramburu Troselj, Bruno MartĂ­n. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; ArgentinaFil: Oviedo, Paola Soledad. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; ArgentinaFil: Ramirez Wierzbicki, Ivana Elizabeth. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; ArgentinaFil: Baraldo Victorica, Luis Mario. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; ArgentinaFil: Cadranel, Alejandro. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; Argentina. Universitat Erlangen-Nuremberg; Alemani
    • 

    corecore