123 research outputs found

    The Optical Counterpart to the Accreting Millisecond X-ray Pulsar SAX J1748.9-2021 in the Globular Cluster NGC 6440

    Get PDF
    We used a combination of deep optical and Halpha images of the Galactic globular cluster NGC 6440, acquired with the Hubble Space Telescope, to identify the optical counterpart to the accreting millisecond X-ray pulsar SAX J1748.9-2021during quiescence. A strong Halpha emission has been detected from a main sequence star (hereafter COM-SAX J1748.9-2021) located at only 0.15" from the nominal position of the X-ray source. The position of the star also agrees with the optical counterpart found by Verbunt et al. (2000) during an outburst. We propose this star as the most likely optical counterpart to the binary system. By direct comparison with isochrones, we estimated that COM-SAX J1748.9-2021 has a mass of 0.70 Msun - 0.83 Msun, a radius of 0.88 pm 0.02 Rsun and a superficial temperature of 5250pm80 K. These parameters combined with the orbital characteristics of the binary suggest that the system is observed at a very low inclination angle (~8 deg -14 deg) and that the star is filling or even overflowing its Roche Lobe. This, together with the equivalent width of the Halpha emission (~20 Ang), suggest possible on-going mass transfer. The possibile presence of such a on-going mass transfer during a quiescence state also suggests that the radio pulsar is not active yet and thus this system, despite its similarity with the class of redback millisecond pulsars, is not a transitional millisecond pulsar.Comment: 8 pages, 6 figures. Accepted for publication in Ap

    Optical Identification of He White Dwarfs Orbiting Four Millisecond Pulsars in the Globular Cluster 47 Tucanae

    Get PDF
    We used ultra-deep UV observations obtained with the Hubble Space Telescope to search for optical companions to binary millisecond pulsars (MSPs) in the globular cluster 47 Tucanae. We identified four new counterparts (to MSPs 47TucQ, 47TucS, 47TucT and 47TucY) and confirmed those already known (to MSPs 47TucU and 47TucW). In the color magnitude diagram, the detected companions are located in a region between the main sequence and the CO white dwarf cooling sequences, consistent with the cooling tracks of He white dwarfs of mass between 0.15 Msun and 0.20 Msun. For each identified companion, mass, cooling age, temperature and pulsar mass (as a function of the inclination angle) have been derived and discussed. For 47TucU we also found that the past accretion history likely proceeded in a sub-Eddington rate. The companion to the redback 47TucW is confirmed to be a non degenerate star, with properties particularly similar to those observed for black widow systems. Two stars have been identified within the 2-sigma astrometric uncertainty from the radio positions of 47TucH and 47TucI, but the available data prevent us from firmly assessing whether they are the true companions of these two MSPs.Comment: 27 pages, 7 figures, Accepted for publication by Ap

    Probing the MSP prenatal stage: the optical identification of the X-ray burster EXO 1745-248 in Terzan 5

    Get PDF
    We report on the optical identification of the neutron star burster EXO 1745-248 in Terzan 5. The identification was performed by exploiting HST/ACS images acquired in Director's Discretionary Time shortly after (approximately 1 month) the Swift detection of the X-ray burst. The comparison between these images and previous archival data revealed the presence of a star that currently brightened by ~3 magnitudes, consistent with expectations during an X-ray outburst. The centroid of this object well agrees with the position, in the archival images, of a star located in the Turn-Off/Sub Giant Branch region of Terzan 5. This supports the scenario that the companion should has recently filled its Roche Lobe. Such a system represents the pre-natal stage of a millisecond pulsar, an evolutionary phase during which heavy mass accretion on the compact object occurs, thus producing X-ray outbursts and re-accelerating the neutron star.Comment: ApJ Letter, in pres

    Radio Timing and Optical Photometry of the Black Widow System PSR J1953+1846A in the Globular Cluster M71

    Get PDF
    We report on the determination of the astrometric, spin and orbital parameters for PSR J1953+1846A, a "black widow" binary millisecond pulsar in the globular cluster M71. By using the accurate position and orbital parameters obtained from radio timing, we identified the optical companion in ACS/Hubble Space Telescope images. It turns out to be a faint (m_F606W>=24, m_F814W>=23) and variable star located at only ~0.06" from the pulsar timing position. The light curve shows a maximum at the pulsar inferior conjunction and a minimum at the pulsar superior conjunction, thus confirming the association with the system. The shape of the optical modulation suggests that the companion star is heated, likely by the pulsar wind. The comparison with the X-ray light curve possibly suggests the presence of an intra-binary shock due to the interaction between the pulsar wind and the material released by the companion. This is the second identification (after COM-M5C) of an optical companion to a black widow pulsar in a globular cluster. Interestingly, the two companions show a similar light curve and share the same position in the color magnitude diagram.Comment: Accepted for publication by ApJ; 33 Pages, 10 Figures, 3 Table

    Discovery of three new millisecond pulsars in Terzan 5

    Get PDF
    We report on the discovery of three new millisecond pulsars (namely J1748-2446aj, J1748-2446ak and J1748-2446al) in the inner regions of the dense stellar system Terzan 5. These pulsars have been discovered thanks to a method, alternative to the classical search routines, that exploited the large set of archival observations of Terzan 5 acquired with the Green Bank Telescope over 5 years (from 2010 to 2015). This technique allowed the analysis of stacked power spectra obtained by combining ~206 hours of observation. J1748-2446aj has a spin period of ~2.96 ms, J1748-2446ak of ~1.89 ms (thus it is the fourth fastest pulsar in the cluster) and J1748-2446al of ~5.95 ms. All the three millisecond pulsars are isolated and currently we have timing solutions only for J1748-2446aj and J1748-2446ak. For these two systems, we evaluated the contribution to the measured spin-down rate of the acceleration due to the cluster potential field, thus estimating the intrinsic spin-down rates, which are in agreement with those typically measured for millisecond pulsars in globular clusters. Our results increase to 37 the number of pulsars known in Terzan 5, which now hosts 25% of the entire pulsar population identified, so far, in globular clusters.Comment: 10 pages, 6 figures. ApJ (accepted

    Interplay between bending and stretching in carbon nanoribbons

    Full text link
    We investigate the bending properties of carbon nanoribbons by combining continuum elasticity theory and tight-binding atomistic simulations. First, we develop a complete analysis of a given bended configuration through continuum mechanics. Then, we provide by tight-binding calculations the value of the bending rigidity in good agreement with recent literature. We discuss the emergence of a stretching field induced by the full atomic-scale relaxation of the nanoribbon architecture. We further prove that such an in-plane strain field can be decomposed into a first contribution due to the actual bending of the sheet and a second one due to edge effects.Comment: 5 pages, 6 figure

    Correlated electron-hole plasma in organometal perovskites

    Get PDF
    Organic-inorganic perovskites are a class of solution-processed semiconductors holding promise for the realization of low-cost efficient solar cells and on-chip lasers. Despite the recent attention they have attracted, fundamental aspects of the photophysics underlying device operation still remain elusive. Here we use photoluminescence and transmission spectroscopy to show that photoexcitations give rise to a conducting plasma of unbound but Coulomb-correlated electron-hole pairs at all excitations of interest for light-energy conversion and stimulated optical amplification. The conductive nature of the photoexcited plasma has crucial consequences for perovskite-based devices: in solar cells, it ensures efficient charge separation and ambipolar transport while, concerning lasing, it provides a low threshold for light amplification and justifies a favourable outlook for the demonstration of an electrically driven laser. We find a significant trap density, whose cross-section for carrier capture is however low, yielding a minor impact on device performance

    The double blue-straggler sequence in NGC 2173: an artifact of field contamination

    Get PDF
    Here we discuss the case of the double blue straggler star (BSS) sequence recently detected in the young stellar cluster NGC2173 in the Large Magellanic Cloud (LMC) by Li et al. (2018, ApJ, 856, 25). In order to investigate this feature we made use of two Hubble Space Telescope (HST) sets of observations, one (the same one used by Li et al.) probing the cluster central regions, and the other sampling the surrounding field. We demonstrate that when field star decontamination is applied, _40% of the BSS population selected by Li et al. turns out to be composed of field stars interlopers. This contamination mainly affects one of the two sequences, which therefore disappears in the decontaminated color-magnitude diagram. We analyze the result of tens different decontamination realizations: we find no evidence of a double BSS sequence in any of them. We therefore conclude that NGC2173 harbors a normal single (poorly populated) BSS sequence and that particular care needs to be devoted to the field decontamination process in any study aimed at probing stellar population features or star counts in the LMC clusters
    • …
    corecore