39 research outputs found

    Quantifying responses of ecological communities to bioclimatic gradients

    Get PDF
    The biotic change along environmental gradients has been the subject of study for well over a century, forming one of the first tools to understand how environment shapes the species and ecosystems that occur. However, gradient studies have historically relied on limited observations on a single transect, limiting their inductive power. Here, I investigate how this limitation can be addressed. I present case studies to illustrate how next-generation transect studies can integrate observations from a wider range of observations of phenotypes, species and communities; together with observations from multiple taxa and gradients. Leaf carbon isotope data from bioclimatic gradients in China, South Australia and Western Australia are integrated to demonstrate a variety of species- and community-level responses to water availability, providing evidence against the previously asserted claim of a simple and universal response. Vegetation data from the same gradient is surveyed with two separate survey methodologies are co-analysed to demonstrate climate is the primary regional determinant of vegetation structure and composition in South Australia, while topographic and edaphic variables are important at a local scale. I find no evidence of ecological disjunctions that may indicate a threshold of vegetation change associated with climate shifts. Comparison of plant and ant species turnover on a spatial gradient suggested that ant communities are ca. 7.5 times more sensitive than plant assemblages to spatial change, providing evidence that future climate change may force community reorganisation and a decoupling of these two taxa, potentially disrupting important interactions and ecosystem function. Well-designed transect studies have the potential to help resolve long-standing questions around the modes of species adaptation to change, as well as improving our understanding of how climate change will shape ecosystems in to the futureThesis (Ph.D.) (Research by Publication) -- University of Adelaide, School of Biological Sciences, 201

    Projected climate change implications for the South Australian flora

    Get PDF
    South Australia has warmed since 1950 and further temperature increases are forecast this century. We explore the implications of climatic warming for individual plant species and the State’s plant biodiversity, which is significant and includes 418 endemic taxa. Environmental constraints and interspecific interactions operate on species to determine which survive in which environment, with resulting compositional signatures. Climate change influences such ‘filtering’ processes via mechanisms such as altered mortality or recruitment rates and indirectly through fire regimes. While modest environmental changes can be absorbed within a given ecological community, significant change will eventually drive species turnover. We use the Hopbush, Dodonaea viscosa subsp. angustissima (DC.) J.G.West as a case study that shows morphological adaptations to arid conditions (narrower leaves and higher stomatal densities), observed in more northern populations in South Australia. Leaves of this species have narrowed through time in conjunction with climatic warming, matching predictions from the spatial cline. Genomic sequencing has also revealed genetic correlations with temperature and aridity, suggesting key climate change variables are impacting the selection of functional genes including those linked to leaf characters. Despite such adaptations in individual species, plant community composition is sensitive to small changes in climate. As a result, predicted climatic changes may ultimately drive complete species turnover, if the more severe scenarios are realised. Spatial analysis highlights a climatic transition zone, between desert and Mediterranean South Australia, where community composition changes more rapidly with climate and this area is therefore likely to be more vulnerable to climate change. Notwithstanding potential evolutionary adaptation, significant climate change will influence ecophysiology, leading to changes in primary productivity and water stress and is predicted to ultimately lead to lower species richness, altered species composition and more uneven abundances. Although we have an empirical understanding of climate sensitivity for South Australian plant communities, we need sophisticated ecological forecasting that considers complex interactions with fire, habitat configuration and evolutionary adaptation.G.R. Guerin, M.J. Christmas, B. Sparrow, A.J. Low

    Leaf nitrogen from first principles: field evidence for adaptive variation with climate

    Get PDF
    Nitrogen content per unit leaf area (Narea) is a key variable in plant functional ecology and biogeochemistry. Narea comprises a structural component, which scales with leaf mass per area (LMA), and a metabolic component, which scales with Rubisco capacity. The co-ordination hypothesis, as implemented in LPJ and related global vegetation models, predicts that Rubisco capacity should be directly proportional to irradiance but should decrease with increases in ci : ca and temperature because the amount of Rubisco required to achieve a given assimilation rate declines with increases in both. We tested these predictions using LMA, leaf δ13C, and leaf N measurements on complete species assemblages sampled at sites on a north–south transect from tropical to temperate Australia. Partial effects of mean canopy irradiance, mean annual temperature, and ci : ca (from δ13C) on Narea were all significant and their directions and magnitudes were in line with predictions. Over 80 % of the variance in community-mean (ln) Narea was accounted for by these predictors plus LMA. Moreover, Narea could be decomposed into two components, one proportional to LMA (slightly steeper in N-fixers), and the other to Rubisco capacity as predicted by the co-ordination hypothesis. Trait gradient analysis revealed ci : ca to be perfectly plastic, while species turnover contributed about half the variation in LMA and Narea. Interest has surged in methods to predict continuous leaf-trait variation from environmental factors, in order to improve ecosystem models. Coupled carbon–nitrogen models require a method to predict Narea that is more realistic than the widespread assumptions that Narea is proportional to photosynthetic capacity, and/or that Narea (and photosynthetic capacity) are determined by N supply from the soil. Our results indicate that Narea has a useful degree of predictability, from a combination of LMA and ci : ca – themselves in part environmentally determined – with Rubisco activity, as predicted from local growing conditions. This finding is consistent with a "plant-centred" approach to modelling, emphasizing the adaptive regulation of traits. Models that account for biodiversity will also need to partition community-level trait variation into components due to phenotypic plasticity and/or genotypic differentiation within species vs. progressive species replacement, along environmental gradients. Our analysis suggests that variation in Narea is about evenly split between these two modes.Ning Dong, Iain Colin Prentice, Bradley J. Evans, Stefan Caddy-Retalic, Andrew J. Lowe and Ian J. Wrigh

    Advancing DNA barcoding and metabarcoding applications for plants requires systematic analysis of herbarium collections-an Australian perspective

    Get PDF
    Building DNA barcode databases for plants has historically been ad hoc, and often with a relatively narrow taxonomic focus. To realize the full potential of DNA barcoding for plants, and particularly its application to metabarcoding for mixed-species environmental samples, systematic sequencing of reference collections is required using an augmented set of DNA barcode loci, applied according to agreed data generation and analysis standards. The largest and most complete reference collections of plants are held in herbaria. Australia has a globally significant flora that is well sampled and expertly curated by its herbaria, coordinated through the Council of Heads of Australasian Herbaria. There exists a tremendous opportunity to provide a comprehensive and taxonomically robust reference database for plant DNA barcoding applications by undertaking coordinated and systematic sequencing of the entire flora of Australia utilizing existing herbarium material. In this paper, we review the development of DNA barcoding and metabarcoding and consider the requirements for a robust and comprehensive system. We analyzed the current availability of DNA barcode reference data for Australian plants, recommend priority taxa for database inclusion, and highlight future applications of a comprehensive metabarcoding system. We urge that large-scale and coordinated analysis of herbarium collections be undertaken to realize the promise of DNA barcoding and metabarcoding, and propose that the generation and curation of reference data should become a national investment priority

    Plant families exhibit unique geographic trends in C4 richness and cover in Australia

    Get PDF
    Numerous studies have analysed the relationship between C4 plant cover and climate. However, few have examined how different C4 taxa vary in their response to climate, or how environmental factors alter C4:C3 abundance. Here we investigate (a) how proportional C4 plant cover and richness (relative to C3) responds to changes in climate and local environmental factors, and (b) if this response is consistent among families. Proportional cover and richness of C4 species were determined at 541 one-hectare plots across Australia for 14 families. C4 cover and richness of the most common and abundant families were regressed against climate and local parameters. C4 richness and cover in the monocot families Poaceae and Cyperaceae increased with latitude and were strongly positively correlated with January temperatures, however C4 Cyperaceae occupied a more restricted temperature range. Seasonal rainfall, soil pH, soil texture, and tree cover modified proportional C4 cover in both families. Eudicot families displayed considerable variation in C4 distribution patterns. Proportional C4 Euphorbiaceae richness and cover were negatively correlated with increased moisture availability (i.e. high rainfall and low aridity), indicating they were more common in dry environments. Proportional C4 Chenopodiaceae richness and cover were weakly correlated with climate and local environmental factors, including soil texture. However, the explanatory power of C4 Chenopodiaceae models were poor, suggesting none of the factors considered in this study strongly influenced Chenopodiaceae distribution. Proportional C4 richness and cover in Aizoaceae, Amaranthaceae, and Portulacaceae increased with latitude, suggesting C4 cover and richness in these families increased with temperature and summer rainfall, but sample size was insufficient for regression analysis. Results demonstrate the unique relationships between different C4 taxa and climate, and the significant modifying effects of environmental factors on C4 distribution. Our work also revealed C4 families will not exhibit similar responses to local perturbations or climate.Samantha E. M. MunroeID, Francesca A. McInerney, Greg R. Guerin, Jake W. Andrae, Nina WeltiID, Stefan Caddy-Retalic, Rachel Atkins, Ben Sparro

    Designing environmental research for impact

    Get PDF
    Transdisciplinary research, involving close collaboration between researchers and the users of research, has been a feature of environmental problem solving for several decades, often spurred by the need to find negotiated outcomes to intractable problems. In 2005, the Australian government allocated funding to its environment portfolio for public good research, which resulted in consecutive four-year programmes (Commonwealth Environmental Research Facilities, National Environmental Research Program). In April 2014, representatives of the funders, researchers and research users associated with these programmes met to reflect on eight years of experience with these collaborative research models.This structured reflection concluded that successful multi-institutional transdisciplinary research is necessarily a joint enterprise between funding agencies, researchers and the end users of research. The design and governance of research programmes need to explicitly recognise shared accountabilities among the participants, while respecting the different perspectives of each group. Experience shows that traditional incentive systems for academic researchers, current trends in public sector management, and loose organisation of many end users, work against sustained transdisciplinary research on intractable problems, which require continuity and adaptive learning by all three parties. The likelihood of research influencing and improving environmental policy and management is maximised when researchers, funders and research users have shared goals; there is sufficient continuity of personnel to build trust and sustain dialogue throughout the research process from issue scoping to application of findings; and there is sufficient flexibility in the funding, structure and operation of transdisciplinary research initiatives to enable the enterprise to assimilate and respond to new knowledge and situations

    A vegetation and soil survey method for surveillance monitoring of rangeland environments

    Get PDF
    Published: 16 June 2020Ecosystem surveillance monitoring is critical to managing natural resources and especially so under changing environments. Despite this importance, the design and implementation of monitoring programs across large temporal and spatial scales has been hampered by the lack of appropriately standardized methods and data streams. To address this gap, we outline a surveillance monitoring method based on permanent plots and voucher samples suited to rangeland environments around the world that is repeatable, cost-effective, appropriate for large-scale comparisons, and adaptable to other global biomes. The method provides comprehensive data on vegetation composition and structure along with soil attributes relevant to plant growth, delivered as a combination of modules that can be targeted for different purposes or available resources. Plots are located in a stratified design across vegetation units, landforms, and climates to enhance continental and global comparisons. Changes are investigated through revisits. Vegetation is measured to inform on composition, cover, and structure. Samples of vegetation and soils are collected and tracked by barcode labels and stored long-term for subsequent analysis. Technology is used to enhance the accuracy of field methods, including differential GPS plot locations, instrument-based Leaf Area Index (LAI) measures, and three dimensional photo-panoramas for advanced analysis. A key feature of the method is the use of electronic field data collection to enhance data delivery into a publicly accessible database. Our method is pragmatic, whilst still providing consistent data, information, and samples on key vegetation and soil attributes. The method is operational and has been applied at more than 704 field locations across the Australian rangelands as part of the Ecosystem Surveillance program of the Terrestrial Ecosystem Research Network (TERN). The methodology enables continental analyses and has been tested in communities broadly representative of rangelands globally, with components being applicable to other biomes. Here we also recommend the consultative process and guiding principles that drove the development of this method as an approach for development of the method into other biomes. The consistent, standardized and objective method enables continental, and potentially global analyses than were not previously possible with disparate programs and datasets.Ben D. Sparrow, Jeff N. Foulkes, Glenda M. Wardle, Emrys J. Leitch, Stefan Caddy-Retalic, Stephen J. van Leeuwen ... et al

    Functional acclimation across microgeographic scales in Dodonaea viscosa

    Get PDF
    Intraspecific plant functional trait variation provides mechanistic insight into persistence and can infer population adaptive capacity. However, most studies explore intraspecific trait variation in systems where geographic and environmental distances co-vary. Such a design reduces the certainty of trait-environment associations, and it is imperative for studies that make trait-environment associations be conducted in systems where environmental distance varies independently of geographic distance. Here we explored trait variation in such a system, and aimed to: (i) quantify trait variation of parent and offspring generations, and associate this variation to parental environments; (ii) determine the traits which best explain population differences; (iii) compare parent and offspring trait-trait relationships. We characterized 15 plant functional traits in eight populations of a shrub with a maximum separation ca. 100 km. Populations differed markedly in aridity and elevation, and environmental distance varied independently of geographic distance. We measured traits in parent populations collected in the field, as well as their offspring reared in greenhouse conditions. Parent traits regularly associated with their environment. These associations were largely lost in the offspring generation, indicating considerable phenotypic plasticity. An ordination of parent traits showed clear structure with strong influence of leaf area, specific leaf area, stomatal traits, isotope δ¹³C and δ¹⁵N ratios, and Narea, whereas the offspring ordination was less structured. Parent trait-trait correlations were in line with expectations from the leaf economic spectrum. We show considerable trait plasticity in the woody shrub over microgeographic scales (<100 km), indicating it has the adaptive potential within a generation to functionally acclimate to a range of abiotic conditions. Since our study shrub is commonly used for restoration in southern Australia and local populations do not show strong genetic differentiation in functional traits, the potential risks of transferring seed across the broad environmental conditions are not likely to be a significant issue.Zdravko Baruch, Alice R. Jones, Kathryn E. Hill, Francesca A. McInerney, Colette Blyth, Stefan Caddy-Retalic, Matthew J. Christmas, Nicholas J. C. Gellie, Andrew J. Lowe, Irene Martin-Fores, Kristine E. Nielson and Martin F. Bree

    Leaf trait associations with environmental variation in the wide-ranging shrub Dodonaea viscosa subsp. angustissima (Sapindaceae)

    Get PDF
    Intra-species variation in specific leaf area (SLA) and leaf area (LA) provides mechanistic insight into the persistence and function of plants, including their likely success under climate change and their suitability for revegetation. We measured SLA and LA in 101 Australian populations of the perennial shrub Dodonaea viscosa (L.) Jacq. subsp. angustissima (narrow-leaf hop-bush) (Sapindaceae). Populations were located across about a 1000 km north–south gradient, with climate grading from arid desert to mesic Mediterranean. We also measured leaves from 11 populations across an elevational gradient (300–800 m asl), where aridity and temperature decrease with elevation. We used regression and principal component analyses to relate leaf traits to the abiotic environment. SLA displayed clinal variation, increasing from north to south and correlated with latitude and the first principal component of joint environmental variables. Both SLA and LA correlated positively with most climatic and edaphic variables. Across latitude, LA showed more variability than SLA. Changes in leaf density and thickness may have caused the relative stability of SLA. Only LA decreased with elevation. The absence of a SLA response to elevation could be a consequence of abiotic conditions that favour low SLA at both ends of the elevational gradient. We demonstrated that the widely distributed narrow-leaf hop-bush shows considerable variability in LA and SLA, which allows it to persist in a broad environmental envelope. As this shrub is widely used for revegetation in Australia, South America and the Asia-Pacific region, our results are consistent with the notion that seed used to revegetate mesic environments could be sourced from more arid areas to increase seed suitability to future climate change.Zdravko Baruch, Matthew J. Christmas, Martin F. Breed, Greg R. Guerin, Stefan Caddy-Retalic, John Mcdonald, Duncan I. Jardine, Emrys Leitch, Nick Gellie, Kathryn Hill, Kimberly Mccallum and Andrew J. Low

    Bioclimatic transect networks: powerful observatories of ecological change

    Get PDF
    First published: 19 May 2017Transects that traverse substantial climate gradients are important tools for climate change research and allow questions on the extent to which phenotypic variation associates with climate, the link between climate and species distributions, and variation in sensitivity to climate change among biomes to be addressed. However, the potential limitations of individual transect studies have recently been highlighted. Here, we argue that replicating and networking transects, along with the introduction of experimental treatments, addresses these concerns. Transect networks provide cost-effective and robust insights into ecological and evolutionary adaptation and improve forecasting of ecosystem change. We draw on the experience and research facilitated by the Australian Transect Network to demonstrate our case, with examples, to clarify how population- and community-level studies can be integrated with observations from multiple transects, manipulative experiments, genomics, and ecological modeling to gain novel insights into how species and systems respond to climate change. This integration can provide a spatiotemporal understanding of past and future climate-induced changes, which will inform effective management actions for promoting biodiversity resilience.Stefan Caddy-Retalic, Alan N. Andersen, Michael J. Aspinwall, Martin F. Breed, Margaret Byrne, Matthew J. Christmas, Ning Dong, Bradley J. Evans, Damien A. Fordham, Greg R. Guerin, Ary A. Hoffmann, Alice C. Hughes, Stephen J. van Leeuwen, Francesca A. McInerney, Suzanne M. Prober, Maurizio Rossetto, Paul D. Rymer, Dorothy A. Steane, Glenda M. Wardle, Andrew J. Low
    corecore