130 research outputs found

    A new study of 25^{25}Mg(α\alpha,n)28^{28}Si angular distributions at EαE_\alpha = 3 - 5 MeV

    Full text link
    The observation of 26^{26}Al gives us the proof of active nucleosynthesis in the Milky Way. However the identification of the main producers of 26^{26}Al is still a matter of debate. Many sites have been proposed, but our poor knowledge of the nuclear processes involved introduces high uncertainties. In particular, the limited accuracy on the 25^{25}Mg(α\alpha,n)28^{28}Si reaction cross section has been identified as the main source of nuclear uncertainty in the production of 26^{26}Al in C/Ne explosive burning in massive stars, which has been suggested to be the main source of 26^{26}Al in the Galaxy. We studied this reaction through neutron spectroscopy at the CN Van de Graaff accelerator of the Legnaro National Laboratories. Thanks to this technique we are able to discriminate the (α\alpha,n) events from possible contamination arising from parasitic reactions. In particular, we measured the neutron angular distributions at 5 different beam energies (between 3 and 5 MeV) in the \ang{17.5}-\ang{106} laboratory system angular range. The presented results disagree with the assumptions introduced in the analysis of a previous experiment.Comment: 9 pages, 9 figures - accepted by EPJ

    Revision of the 15N(p,{\gamma})16O reaction rate and oxygen abundance in H-burning zones

    Full text link
    The NO cycle takes place in the deepest layer of a H-burning core or shell, when the temperature exceeds T {\simeq} 30 {\cdot} 106 K. The O depletion observed in some globular cluster giant stars, always associated with a Na enhancement, may be due to either a deep mixing during the RGB (red giant branch) phase of the star or to the pollution of the primordial gas by an early population of massive AGB (asymptotic giant branch) stars, whose chemical composition was modified by the hot bottom burning. In both cases, the NO cycle is responsible for the O depletion. The activation of this cycle depends on the rate of the 15N(p,{\gamma})16O reaction. A precise evaluation of this reaction rate at temperatures as low as experienced in H-burning zones in stellar interiors is mandatory to understand the observed O abundances. We present a new measurement of the 15N(p,{\gamma})16O reaction performed at LUNA covering for the first time the center of mass energy range 70-370 keV, which corresponds to stellar temperatures between 65 {\cdot} 106 K and 780 {\cdot}106 K. This range includes the 15N(p,{\gamma})16O Gamow-peak energy of explosive H-burning taking place in the external layer of a nova and the one of the hot bottom burning (HBB) nucleosynthesis occurring in massive AGB stars. With the present data, we are also able to confirm the result of the previous R-matrix extrapolation. In particular, in the temperature range of astrophysical interest, the new rate is about a factor of 2 smaller than reported in the widely adopted compilation of reaction rates (NACRE or CF88) and the uncertainty is now reduced down to the 10% level.Comment: 6 pages, 5 figure

    Impact of a revised 25^{25}Mg(p,Îł\gamma)26^{26}Al reaction rate on the operation of the Mg-Al cycle

    Get PDF
    Proton captures on Mg isotopes play an important role in the Mg-Al cycle active in stellar H-burning regions. In particular, low-energy nuclear resonances in the 25^{25}Mg(p,γ\gamma)26^{26}Al reaction affect the production of radioactive 26^{26}Algs^{gs} as well as the resulting Mg/Al abundance ratio. Reliable estimations of these quantities require precise measurements of the strengths of low-energy resonances. Based on a new experimental study performed at LUNA, we provide revised rates of the 25^{25}Mg(p,γ\gamma)26^{26}Algs^{gs} and the 25^{25}Mg(p,γ\gamma)26^{26}Alm^{m} reactions with corresponding uncertainties. In the temperature range 50 to 150 MK, the new recommended rate of the 26^{26}Alm^{m} production is up to 5 times higher than previously assumed. In addition, at T=100=100 MK, the revised total reaction rate is a factor of 2 higher. Note that this is the range of temperature at which the Mg-Al cycle operates in an H-burning zone. The effects of this revision are discussed. Due to the significantly larger 25^{25}Mg(p,γ\gamma)26^{26}Alm^{m} rate, the estimated production of 26^{26}Algs^{gs} in H-burning regions is less efficient than previously obtained. As a result, the new rates should imply a smaller contribution from Wolf-Rayet stars to the galactic 26^{26}Al budget. Similarly, we show that the AGB extra-mixing scenario does not appear able to explain the most extreme values of 26^{26}Al/27^{27}Al, i.e. >10−2>10^{-2}, found in some O-rich presolar grains. Finally, the substantial increase of the total reaction rate makes the hypothesis of a self-pollution by massive AGBs a more robust explanation for the Mg-Al anticorrelation observed in Globular-Cluster stars

    Improved S factor of the 12C(p,γ)13N reaction at E=320–620 keV and the 422 keV resonance

    Get PDF
    The 12C(p,γ)13N reaction is the onset process of both the CNO and hot CNO cycles that drive massive star, red and asymptotic giant branch star, and novae nucleosynthesis. The 12C(p,γ)13N rate affects the final abundances of the stable 12,13C nuclides with ramifications for meteoritic carbon isotopic abundances and the s-process neutron source strength. Here, an underground measurement of the 12C(p,γ)13N cross section is reported. The present data, obtained at the Felsenkeller shallow-underground laboratory in Dresden (Germany), encompass the 320–620 keV center of mass energy range to include the wide and poorly constrained E=422 keV resonance that dominates the rate at high temperatures. This work's S-factor results, lower than literature by 25%, are included in a comprehensive R-matrix fit, and the energy of the 12+ first excited state of 13N is found to be 2369.6(4) keV with a radiative and proton width of 0.49(3) eV and 34.9(2) keV, respectively. A reaction rate, based on the present R-matrix fit and extrapolation, is suggested

    PERL: a dataset of geotechnical, geophysical, and hydrogeological parameters for earthquake-induced hazards assessment in Terre del Reno (Emilia-Romagna, Italy)

    Get PDF
    In 2012, the Emilia-Romagna region (Italy) was struck by a seismic crisis characterized by two main shocks (ML 5.9 and 5.8) which triggered relevant liquefaction events. Terre del Reno is one of the municipalities that experienced the most extensive liquefaction effects due to its complex geostratigraphic and geomorphological setting. This area is indeed located in a floodplain characterized by lenticular fluvial channel bodies associated with crevasse and levee clay–sand alternations, related to the paleo-Reno River. Therefore, it was chosen as a case study for the PERL project, which aims to define a new integrated methodology to assess the liquefaction susceptibility in complex stratigraphic conditions through a multi-level approach. To this aim, about 1800 geotechnical, geophysical, and hydrogeological investigations from previous studies and new realization surveys were collected and stored in the PERL dataset. This dataset is here publicly disclosed, and some possible applications are reported to highlight its potential.</p

    Constraining the S factor of 15N(p,g)16O at Astrophysical Energies

    Full text link
    The 15N(p,g)16O reaction represents a break out reaction linking the first and second cycle of the CNO cycles redistributing the carbon and nitrogen abundances into the oxygen range. The reaction is dominated by two broad resonances at Ep = 338 keV and 1028 keV and a Direct Capture contribution to the ground state of 16O. Interference effects between these contributions in both the low energy region (Ep < 338 keV) and in between the two resonances (338 <Ep < 1028 keV) can dramatically effect the extrapolation to energies of astrophysical interest. To facilitate a reliable extrapolation the 15N(p,g)16O reaction has been remeasured covering the energy range from Ep=1800 keV down to 130 keV. The results have been analyzed in the framework of a multi-level R-matrix theory and a S(0) value of 39.6 keV b has been found.Comment: 15 pages, 9 figure

    RadioLab project: knowledge of radon gas in Italy

    Get PDF
    AbstractRadioLab is an Italian project, addressed to school-age people, and designed for the dissemination of scientific culture on the theme of environmental radioactivity, with particular regards to the importance of knowledge of radon gas exposure. The project is a nationwide initiative promoted by the National Institute of Nuclear Physics- INFN. First tool used by the project, and of immediate impact to assess the public awareness on radon, is the administration of the survey “do you know the radon gas?”. In the survey, together with the knowledge of radon and of its sources, information on personal, cultural and territorial details regarding the interviewees are also taken. Reasonably, the survey invests not only young people, but also their relatives, school workers and, gradually, the public. The survey is administrated during exhibitions or outreach events devoted to schools, but also open to the public. The survey is in dual form: printed and online. The online mode clearly leads RadioLab project even outside the school environment. Based on the results of the survey, several statistical analyses have been performed and many conclusions are drawn about the knowledge of the population on the radon risk. The RadioLab benefit and the requirement to carry on the project goals, spreading awareness of environmental radioactivity from radon, emerge. The dataset involves all twenty Italian regions and consists of 28,612 entries covering the 5-year period 2018–2022
    • 

    corecore