23 research outputs found

    Industrially-relevant polymerization-induced self-assembly formulations in non-polar solvents: RAFT dispersion polymerization of benzyl methacrylate

    Get PDF
    Industrially-sourced mineral oil and a poly(α-olefin) are used as solvents for the reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate (BzMA) using a poly(lauryl methacrylate) macromolecular chain transfer agent (PLMA macro-CTA) at 90 °C. The insolubility of the growing PBzMA chains under such conditions leads to polymerization-induced self-assembly (PISA), whereby poly(lauryl methacrylate)-poly(benzyl methacrylate) (PLMA-PBzMA) diblock copolymer spheres, worms or vesicles are produced directly as concentrated dispersions. The particular diblock copolymer composition required to access each individual morphology depends on the nature of the oil. Moreover, the solvent type also affects important properties of the physical free-standing gels that are formed by the PLMA-PBzMA worm dispersions, including the storage modulus (Gâ€Č), critical gelation temperature (CGT) and critical gelation concentration (CGC). Spherical PLMA-PBzMA diblock copolymer nanoparticles can be prepared at up to 50% w/w solids and an efficient ‘one-pot’ protocol involving solution polymerization of LMA followed immediately by dispersion polymerization of BzMA has been developed. The latter formulation enables high BzMA conversions to be achieved, with spherical nanoparticles being produced at 30% w/w solids

    Thermo-responsive Diblock Copolymer Worm Gels in Non-polar Solvents

    Get PDF
    Benzyl methacrylate (BzMA) is polymerized using a poly(lauryl methacrylate) macromolecular chain transfer agent (PLMA macro-CTA) using reversible addition–fragmentation chain transfer (RAFT) polymerization at 70 °C in n-dodecane. This choice of solvent leads to an efficient dispersion polymerization, with polymerization-induced self-assembly (PISA) occurring via the growing PBzMA block to produce a range of PLMA–PBzMA diblock copolymer nano-objects, including spheres, worms, and vesicles. In the present study, particular attention is paid to the worm phase, which forms soft free-standing gels at 20 °C due to multiple inter-worm contacts. Such worm gels exhibit thermo-responsive behavior: heating above 50 °C causes degelation due to the onset of a worm-to-sphere transition. Degelation occurs because isotropic spheres interact with each other much less efficiently than the highly anisotropic worms. This worm-to-sphere thermal transition is essentially irreversible on heating a dilute solution (0.10% w/w) but is more or less reversible on heating a more concentrated dispersion (20% w/w). The relatively low volatility of n-dodecane facilitates variable-temperature rheological studies, which are consistent with eventual reconstitution of the worm phase on cooling to 20 °C. Variable-temperature 1H NMR studies conducted in d26-dodecane confirm partial solvation of the PBzMA block at elevated temperature: surface plasticization of the worm cores is invoked to account for the observed change in morphology, because this is sufficient to increase the copolymer curvature and hence induce a worm-to-sphere transition. Small-angle X-ray scattering and TEM are used to investigate the structural changes that occur during the worm-to-sphere-to-worm thermal cycle; experiments conducted at 1.0 and 5.0% w/w demonstrate the concentration-dependent (ir)reversibility of these morphological transitions

    Reactions of 1-Oxaspiro[2.5]octa-5,7-dien-4-ones with nucleophiles

    No full text
    corecore