165 research outputs found
On the complexity of the boundary layer structure and aerosol vertical distribution in the coastal Mediterranean regions: a case study
The planetary boundary layer structure in the coastal areas, and particularly in complex orography regions such as the Mediterranean, is extremely intricate. In this study, we show the evolution of the planetary boundary layer based on in situ airborne measurements and ground-based remote sensing observations carried out during the MORE (Marine Ozone and Radiation Experiment) campaign in June 2010. The campaign was held in a rural coastal Mediterranean region in Southern Italy. The study focuses on the observations made on 17 June. Vertical profiles of meteorological parameters and aerosol size distribution were measured during two flights: in the morning and in the afternoon. Airborne observations were combined with ground-based LIDAR, SODAR, microwave and visible radiometer measurements, allowing a detailed description of the atmospheric vertical structure. The analysis was complemented with data from a regional atmospheric model run with horizontal resolutions of 12, 4 and 1 km, respectively; back-trajectories were calculated at these spatial resolutions. The observations show the simultaneous occurrence of dust transport, descent of mid-tropospheric air and sea breeze circulation on 17 June. Local pollution effects on the aerosol distribution, and a possible event of new particles formation were also observed. A large variability in the thermodynamical structure and aerosol distribution in the flight region, extending by approximately 30km along the coast, was found. Within this complex, environment-relevant differences in the back-trajectories calculated at different spatial resolutions are found, suggesting that the description of several dynamical processes, and in particular the sea breeze circulation, requires high-resolution meteorological analyses. The study also shows that the integration of different observational techniques is needed to describe these complex conditions; in particular, the availability of flights and their timing with respect to the occurring phenomena are crucial
Oscillator strengths for transitions to Rydberg levels in , and between 967 and 972 A
Absorption oscillator strengths have been determined from high-resolution
spectra in the 967-972 \AA region of three CO isotopomers for transitions to
the Rydberg levels 4{\it p}(0), 3{\it d}(1) and 4{\it p}(0),
as well as to the mixed {\it E(6)} level recently characterized by Eidelsberg
et al. (2004). Synchrotron radiation from the Super-ACO electron storage ring
at Orsay (LURE) was used as a light source. Oscillator strengths were extracted
from the recorded spectra by least-squares fitting of the experimental profiles
with synthetic spectra taking into account the homogeneous and heterogeneous
interactions of the four levels. Column densities were derived from fits to the
3{\it p}(0) absorption band whose oscillator strength is well established.
These are the first reported measurements for CO. For
CO, our results are consistent with the larger values obtained in
the most recent laboratory and astronomical studies.Comment: 9 pages 7 figures 3 tables. Accepted in A&A, date of acceptance
11/05/200
Enrichment of CH3F nuclear spin isomers by resonant microwave radiation
Theoretical model of the coherent control of nuclear spin isomers by
microwave radiation has been developed. Model accounts the M-degeneracy of
molecular states and molecular center-of-mass motion. The model has been
applied to the 13CH3F molecules. Microwave radiation excites the para state
(J=11,K=1) which is mixed by the nuclear spin-spin interaction with the ortho
state (9,3). Dependencies of the isomer enrichment and conversion rates on the
radiation frequency have been calculated. Both spectra consist of two
resonances situated at the centers of allowed and forbidden (by nuclear spin)
transitions in the molecule. Larger enrichment, up to 7%, can be produced by
strong radiation resonant to the forbidden transition. The spin conversion rate
can be increased by 2 orders of magnitude at this resonance.Comment: REVTEX, 14 pages + 6 eps figure
Cobalt oxide nanoparticles induce oxidative stress and alter electromechanical function in rat ventricular myocytes
Background: Nanotoxicology is an increasingly relevant field and sound paradigms on how inhaled nanoparticles (NPs) interact with organs at the cellular level, causing harmful conditions, have yet to be established. This is particularly true in the case of the cardiovascular system, where experimental and clinical evidence shows morphological and functional damage associated with NP exposure. Giving the increasing interest on cobalt oxide (Co3O4) NPs applications in industrial and bio-medical fields, a detailed knowledge of the involved toxicological effects is required, in view of assessing health risk for subjects/workers daily exposed to nanomaterials. Specifically, it is of interest to evaluate whether NPs enter cardiac cells and interact with cell function. We addressed this issue by investigating the effect of acute exposure to Co3O4-NPs on excitation-contraction coupling in freshly isolated rat ventricular myocytes. Results: Patch clamp analysis showed instability of resting membrane potential, decrease in membrane electrical capacitance, and dose-dependent decrease in action potential duration in cardiomyocytes acutely exposed to Co3O4-NPs. Motion detection and intracellular calcium fluorescence highlighted a parallel impairment of cell contractility in comparison with controls. Specifically, NP-treated cardiomyocytes exhibited a dose-dependent decrease in the fraction of shortening and in the maximal rate of shortening and re-lengthening, as well as a less efficient cytosolic calcium clearing and an increased tendency to develop spontaneous twitches. In addition, treatment with Co3O4-NPs strongly increased ROS accumulation and induced nuclear DNA damage in a dose dependent manner. Finally, transmission electron microscopy analysis demonstrated that acute exposure did lead to cellular internalization of NPs. Conclusions: Taken together, our observations indicate that Co3O4-NPs alter cardiomyocyte electromechanical efficiency and intracellular calcium handling, and induce ROS production resulting in oxidative stress that can be related to DNA damage and adverse effects on cardiomyocyte functionality
Spectrally resolved observations of atmospheric emitted radiance in the H2O rotation band
This paper presents the project Earth Cooling by Water
Vapor Radiation, an observational programme, which aims at
developing a database of spectrally resolved far infrared
observations, in atmospheric dry conditions, in order to
validate radiative transfer models and test the quality of water
vapor continuum and line parameters. The project provides
the very first set of far-infrared spectral downwelling
radiance measurements, in dry atmospheric conditions,
which are complemented with Raman Lidar-derived
temperature and water vapor profiles
A realistic example of chaotic tunneling: The hydrogen atom in parallel static electric and magnetic fields
Statistics of tunneling rates in the presence of chaotic classical dynamics
is discussed on a realistic example: a hydrogen atom placed in parallel uniform
static electric and magnetic fields, where tunneling is followed by ionization
along the fields direction. Depending on the magnetic quantum number, one may
observe either a standard Porter-Thomas distribution of tunneling rates or, for
strong scarring by a periodic orbit parallel to the external fields, strong
deviations from it. For the latter case, a simple model based on random matrix
theory gives the correct distribution.Comment: Submitted to Phys. Rev.
Integrated evaluation of indoor particulate exposure. The viepi project
Despite the progress made in recent years, reliable modeling of indoor air quality is still far from being obtained. This requires better chemical characterization of the pollutants and airflow physics included in forecasting tools, for which field observations conducted simultaneously indoors and outdoors are essential. The project âIntegrated Evaluation of Indoor Particulate Exposureâ (VIEPI) aimed at evaluating indoor air quality and exposure to particulate matter (PM) of humans in workplaces. VIEPI ran from February 2016 to December 2019 and included both numerical simulations and field campaigns carried out in universities and research environments located in urban and non-urban sites in the metropolitan area of Rome (Italy). VIEPI focused on the role played by micrometeorology and indoor airflow characteristics in determining indoor PM concentration. Short-and long-term study periods captured diurnal, weekly, and seasonal variability of airflow and PM concentration. Chemical characterization of PM10, including the determination of elements, ions, elemental carbon, organic carbon, and bioaerosol, was also carried out. Large differences in the composition of PM10 were detected between inside and outside as well as between different periods of the day and year. Indoor PM composition was related to the presence of people, to the season, and to the ventilation regime
Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes
We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re
- âŠ