166 research outputs found

    Metal-Organic Frameworks as Heterogenous Photocatalysts for the Production of Solar Fuels

    Full text link
    [ES] La presente tesis doctoral se ha basado en el estudio del uso de MOFs como fotocatalizadores para la producción de combustibles solares. Específicamente, los fotocatalizadores basados en MOF se han utilizado para la reacción de descomposición del agua y la reducción de CO2 en ausencia de agentes de sacrificio o disolventes orgánicos. MIL-125(Ti)-NH2 se puede utilizar como fotocatalizador para la reacción de descomposición del agua en presencia de UV-Vis o irradiación natural de la luz solar. La actividad de este material se puede potenciar mediante el uso de Pt y NPs de RuOx como co-catalizadores. Además, la actividad fotocatalítica de MIL 125(Ti)-NH2 se puede mejorar mediante un tratamiento de plasma de oxígeno que introduce defectos estructurales dando lugar a un material optimizado para catalizar la reacción de descomposición del agua. La presente tesis ha mostrado por primera vez la posibilidad de utilizar MOFs como fotocatalizadores para la metanación de CO2. En particular, un Zn-MOF y un Ti-MOF, MOF(Zn)-1 y MIP 208 respectivamente, se pueden utilizar como fotocatalizadores para promover la metanación de CO2 en condiciones de reacción suaves. Además, la actividad fotocatalítica de estos MOFs se incrementa en presencia de pequeñas NPs de Cu2O y, especialmente, por NPs de RuOx en la estructura de estos materiales. Es de destacar que el material compuesto por NPs de RuOx soportadas en MIL-125(Ti)-NH2 puede considerarse un fotocatalizador de referencia para la metanación de CO2 mediada por energía solar y en flujo continuo.[CA] La present tesi doctoral s'ha basat en l'estudi de l'ús de MOFs com a fotocatalitzadors per a la producció de combustibles solars. Específicament, els fotocatalitzadors basats en MOF s'han utilitzat per a la reacció de descomposició de l'aigua i la reducció de CO¿ en absència d'agents de sacrifici o dissolvents orgànics. MIL-125(Ti)-NH2 es pot utilitzar com fotocatalitzador per a la reacció de descomposició de l'aigua sota UV-Vis o irradiació natural de la llum solar i la seua activitat pot ser augmentada mitjançant l'ús de Pt i NPs de RuOx com co catalitzadors. A més, l'activitat fotocatalítica de MIL-125(Ti)-NH2 es pot millorar mitjançant un tractament de plasma d'oxigen que introdueix defectes estructurals resultant en un material optimitzat per a la reacció de descomposició de l'aigua. La present tesi ha mostrat per primera vegada la possibilitat d'utilitzar MOFs com fotocatalizador per a la metanació de CO¿. En particular, un Zn-MOF y un Ti MOF, MOF(Zn)-1 y MIP-208 respectivament, es poden utilitzar com fotocatalitzadors per a promoure la metanació de CO¿ en condicions de reacció suaus. A més, l'activitat fotocatalítica d'aquests MOFs pot ser realçada per la presència de xicotetes NPs de Cu2O i, especialment, per les NPs de RuOx en l'estructura d'aquestos materials. És de destacar que el material composat per NPs de RuOx suportades en MIL-125(Ti)-NH2 es pot considerar un fotocatalitzador de referència per a la metanació de CO2 amb energia solar i en flux continu.[EN] The present doctoral thesis studied the use of MOFs as photocatalysts to produce solar fuels. MOF-based photocatalysts were used for overall water splitting and CO2 reduction in the absence of sacrificial agents or organic solvents. MIL 125(Ti)-NH2 can be used as photocatalyst for overall water splitting under both UV-Vis or natural sunlight irradiation. The activity of this material can be enhanced using Pt and RuOx NPs as co-catalysts. Also, the photocatalytic activity of pristine MIL 125(Ti)-NH2 can be enhanced by oxygen-plasma treatment, which introduces structural defects and produces an optimized material for overall water splitting. This thesis has shown for the first time the possibility of using MOFs as photocatalysts for CO2 methanation. More specifically, a Zn and Ti MOF materials, MOF(Zn)-1 and MIP-208 respectively, can be used as photocatalysts to promote CO2 methanation under mild reaction conditions. The photocatalytic activity of these MOFs can be enhanced in the presence of small Cu2O NPs, and, especially, RuOx NPs in their structure. RuOx NPs supported on MIL-125(Ti)-NH2 can be envisioned as a benchmark photocatalyst for solar-driven CO2 methanation in continuous-flow operations.Cabrero Antonino, M. (2021). Metal-Organic Frameworks as Heterogenous Photocatalysts for the Production of Solar Fuels [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17666

    Reacciones de hidroadición regioselectiva sobre alquenos y alquinos catalizadas por triflimida de hierro (III)

    Full text link
    En la presente tesis se ha estudiado el comportamiento catalítico de la especie triflimida de hierro(III), de fórmula Fe(NTf2)3 donde (Tf = SO2CF3), para una serie de reacciones de hidroadición regioselectiva sobre alquenos y alquinos. Esta sal metálica constituida por un catión con carácter ácido duro de Lewis (Fe3+) junto con un anión poco coordinante y de baja nucleofília como el (-NTf2) ha demostrado ser un catalizador altamente eficiente para la activación de enlaces múltiples C-C (alquenos y alquinos). En todas estas reacciones se observa una buena regioselectividad hacia posiciones bencílicas (posición interna del doble enlace en estirenos y del triple enlace en fenilacetilenos). El catalizador Fe(NTf2)3 se genera de manera sencilla y directa en 1,4-dioxano a partir de la reacción de metátesis entre FeCl3 y AgNTf2, y su formación y naturaleza química se han estudiado por estudios de espectroscopia RMN de 19F y 15N, voltamperometría cíclica, espectroscopia UV-VIS y resonancia paramagnética electrónica (RPE). La presencia de aniones triflimida genera, en principio, una estabilización del LUMO del hierro (orbitales 3d), lo que le confiere un mayor carácter electropositivo y aumentan por tanto su acidez de Lewis. Adicionalmente, la triflimida de hierro(III) presenta una configuración electrónica de alto espín, teniendo los 5 electrones 3d del hierro(III) desapareados en configuración de capa semillena. Las principales reacciones estudiadas donde la triflimida de hierro(III) es un catalizador activo y selectivo son: 1) dimerización cabeza-cola de estirenos para obtener olefinas sustituidas, 2) hidrotiolación regioselectiva en posición Markovnikov de estirenos para obtener tioéteres bencílicos y 3) hidratación regioselectiva en posición Markovnikov de alquinos para obtener cetonas. El hierro(III) en forma de Fe(NTf2)3 y sin ayuda de ligando auxiliar, puede actuar como un catalizador sustituto del complejo de oro(I) de fórmula PPh3AuNTf2 para una serie de reacciones de hidroadición regioselectiva sobre alquenos y alquinos. Mediante estudios in-situ de espectroscopia RMN de 19F, 15N y 31P se ha demostrado que en determinadas condiciones de reacción (temperatura, reactivos y disolvente adecuados) el complejo PPh3AuNTf2 es inestable y puede sufrir cierta hidrólisis parcial generando in-situ ácido triflimídico (HNTf2), mientras que Fe(NTf2)3 se mantiene estable.Cabrero Antonino, JR. (2013). Reacciones de hidroadición regioselectiva sobre alquenos y alquinos catalizadas por triflimida de hierro (III) [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34673TESISPremiad

    Catalytic Reductive N-Alkylations Using CO2 and Carboxylic Acid Derivatives: Recent Progress and Developments

    Full text link
    This is the peer reviewed version of the following article: Angew. Chem. Int. Ed. 2019, 58, 12820 12838, which has been published in final form at https://doi.org/10.1002/anie.201810121. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] N-Alkylamines are key intermediates in the synthesis of fine chemicals, dyes, and natural products, and hence are highly valuable building blocks in organic chemistry. Consequently, the development of greener and more efficient procedures for their production continues to attract the interest of both academic and industrial chemists. Reductive procedures such as reductive amination or N-alkylation through hydrogen autotransfer by employing carbonyl compounds or alcohols as alkylating agents have prevailed for the synthesis of amines. In the last few years, carboxylic/carbonic acid derivatives and CO2 have been introduced as alternative and convenient alkylating sources. The safety, easy accessibility, and high stability of these reagents makes the development of new reductive transformations with them as N-alkylating agents a useful alternative to existing procedures. In this Review, we summarize reported examples of one-pot reductive N-alkylation methods that use carboxylic/carbonic acid derivatives or CO2 as alkylating agents.This work was supported by the state of MecklenburgVorpommern and the BMBF. J.R.C.-A. thanks the Ministerio de Ciencia, Innovacion y Universidades for a Juan de la Cierva contract. R.A. thanks UPV for a postdoctoral contract.Cabrero Antonino, JR.; Adam-Ortiz, R.; Beller, M. (2019). Catalytic Reductive N-Alkylations Using CO2 and Carboxylic Acid Derivatives: Recent Progress and Developments. Angewandte Chemie International Edition. 58(37):12820-12838. https://doi.org/10.1002/anie.201810121S12820128385837Adams, J. M., & Cory, S. (1975). Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature, 255(5503), 28-33. doi:10.1038/255028a0Kleemann, A., Engel, J., Kutscher, B., & Reichert, D. (Eds.). (2009). Pharmaceutical Substances. doi:10.1055/b-003-108611Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., … Rechavi, G. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 485(7397), 201-206. doi:10.1038/nature11112Chatterjee, J., Rechenmacher, F., & Kessler, H. (2012). N-Methylation of Peptides and Proteins: An Important Element for Modulating Biological Functions. Angewandte Chemie International Edition, 52(1), 254-269. doi:10.1002/anie.201205674Chatterjee, J., Rechenmacher, F., & Kessler, H. (2012). N-Methylierung von Peptiden und Proteinen: ein wichtiges Element für die Regulation biologischer Funktionen. Angewandte Chemie, 125(1), 268-283. doi:10.1002/ange.201205674Froidevaux, V., Negrell, C., Caillol, S., Pascault, J.-P., & Boutevin, B. (2016). Biobased Amines: From Synthesis to Polymers; Present and Future. Chemical Reviews, 116(22), 14181-14224. doi:10.1021/acs.chemrev.6b00486Salvatore, R. N., Yoon, C. H., & Jung, K. W. (2001). Synthesis of secondary amines. Tetrahedron, 57(37), 7785-7811. doi:10.1016/s0040-4020(01)00722-0Lamoureux, G., & Agüero, C. (2009). A comparison of several modern alkylating agents. Arkivoc, 2009(1), 251-264. doi:10.3998/ark.5550190.0010.108Luo, H., Wu, G., Zhang, Y., & Wang, J. (2015). Silver(I)-CatalyzedN-Trifluoroethylation of Anilines andO-Trifluoroethylation of Amides with 2,2,2-Trifluorodiazoethane. Angewandte Chemie International Edition, 54(48), 14503-14507. doi:10.1002/anie.201507219Luo, H., Wu, G., Zhang, Y., & Wang, J. (2015). Silver(I)-CatalyzedN-Trifluoroethylation of Anilines andO-Trifluoroethylation of Amides with 2,2,2-Trifluorodiazoethane. Angewandte Chemie, 127(48), 14711-14715. doi:10.1002/ange.201507219Selva, M., Trotta, F., & Tundo, P. (1992). Esters and orthoesters as alkylating agents at high temperature. Applications to continuous-flow processes. Journal of the Chemical Society, Perkin Transactions 2, (4), 519. doi:10.1039/p29920000519Padmanabhan, S., Reddy, N. L., & Durant, G. J. (1997). A Convenient One Pot Procedure for N-Methylation of Aromatic Amines Using Trimethyl Orthoformate. Synthetic Communications, 27(4), 691-699. doi:10.1080/00397919708003343Rivetti, F., Romano, U., & Delledonne, D. (1996). Dimethylcarbonate and Its Production Technology. Green Chemistry, 70-80. doi:10.1021/bk-1996-0626.ch006Ono, Y. (1997). Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Applied Catalysis A: General, 155(2), 133-166. doi:10.1016/s0926-860x(96)00402-4Pacheco, M. A., & Marshall, C. L. (1997). Review of Dimethyl Carbonate (DMC) Manufacture and Its Characteristics as a Fuel Additive. Energy & Fuels, 11(1), 2-29. doi:10.1021/ef9600974Delledonne, D., Rivetti, F., & Romano, U. (2001). Developments in the production and application of dimethylcarbonate. Applied Catalysis A: General, 221(1-2), 241-251. doi:10.1016/s0926-860x(01)00796-7Tundo, P., & Selva, M. (2002). The Chemistry of Dimethyl Carbonate. Accounts of Chemical Research, 35(9), 706-716. doi:10.1021/ar010076fSelva, M., Tundo, P., & Perosa, A. (2003). Reaction of Functionalized Anilines with Dimethyl Carbonate over NaY Faujasite. 3. Chemoselectivity toward Mono-N-methylation. The Journal of Organic Chemistry, 68(19), 7374-7378. doi:10.1021/jo034548aTundo, P., Rossi, L., & Loris, A. (2005). Dimethyl Carbonate as an Ambident Electrophile. The Journal of Organic Chemistry, 70(6), 2219-2224. doi:10.1021/jo048532bSelva, M., Perosa, A., Tundo, P., & Brunelli, D. (2006). SelectiveN,N-Dimethylation of Primary Aromatic Amines with Methyl Alkyl Carbonates in the Presence of Phosphonium Salts. The Journal of Organic Chemistry, 71(15), 5770-5773. doi:10.1021/jo060674dSelva, M. (2007). Green approaches to highly selective processes: Reactions of dimethyl carbonate over both zeolites and base catalysts. Pure and Applied Chemistry, 79(11), 1855-1867. doi:10.1351/pac200779111855Selva, M., & Perosa, A. (2008). Green chemistry metrics: a comparative evaluation of dimethyl carbonate, methyl iodide, dimethyl sulfate and methanol as methylating agents. Green Chemistry, 10(4), 457. doi:10.1039/b713985cDhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Applied Catalysis A: General, 378(1), 19-25. doi:10.1016/j.apcata.2010.01.042Kawai, K., Li, Y.-S., Song, M.-F., & Kasai, H. (2010). DNA methylation by dimethyl sulfoxide and methionine sulfoxide triggered by hydroxyl radical and implications for epigenetic modifications. Bioorganic & Medicinal Chemistry Letters, 20(1), 260-265. doi:10.1016/j.bmcl.2009.10.124Jiang, X., Wang, C., Wei, Y., Xue, D., Liu, Z., & Xiao, J. (2013). A General Method for N-Methylation of Amines and Nitro Compounds with Dimethylsulfoxide. Chemistry - A European Journal, 20(1), 58-63. doi:10.1002/chem.201303802Atkinson, B. N., & Williams, J. M. J. (2014). Dimethylsulfoxide as an N-Methylation Reagent for Amines and Aromatic Nitro Compounds. ChemCatChem, 6(7), 1860-1862. doi:10.1002/cctc.201400015Eschweiler, W. (1905). Ersatz von an Stickstoff gebundenen Wasserstoffatomen durch die Methylgruppe mit Hülfe von Formaldehyd. Berichte der deutschen chemischen Gesellschaft, 38(1), 880-882. doi:10.1002/cber.190503801154Clarke, H. T., Gillespie, H. B., & Weisshaus, S. Z. (1933). The Action of Formaldehyde on Amines and Amino Acids1. Journal of the American Chemical Society, 55(11), 4571-4587. doi:10.1021/ja01338a041Kim, S., Oh, C. H., Ko, J. S., Ahn, K. H., & Kim, Y. J. (1985). Zinc-modified cyanoborohydride as a selective reducing agent. The Journal of Organic Chemistry, 50(11), 1927-1932. doi:10.1021/jo00211a028Fache, F., Jacquot, L., & Lemaire, M. (1994). Extension of the eschweiler-clarke procedure to the N-alkylation of amides. Tetrahedron Letters, 35(20), 3313-3314. doi:10.1016/s0040-4039(00)76894-8Gomez, S., Peters, J. A., & Maschmeyer, T. (2002). The Reductive Amination of Aldehydes and Ketones and the Hydrogenation of Nitriles: Mechanistic Aspects and Selectivity Control. Advanced Synthesis & Catalysis, 344(10), 1037-1057. doi:10.1002/1615-4169(200212)344:103.0.co;2-3Steinhuebel, D., Sun, Y., Matsumura, K., Sayo, N., & Saito, T. (2009). Direct Asymmetric Reductive Amination. Journal of the American Chemical Society, 131(32), 11316-11317. doi:10.1021/ja905143mWakchaure, V. N., Zhou, J., Hoffmann, S., & List, B. (2010). Catalytic Asymmetric Reductive Amination of α-Branched Ketones. Angewandte Chemie International Edition, 49(27), 4612-4614. doi:10.1002/anie.201001715Wakchaure, V. N., Zhou, J., Hoffmann, S., & List, B. (2010). Catalytic Asymmetric Reductive Amination of α-Branched Ketones. Angewandte Chemie, 122(27), 4716-4718. doi:10.1002/ange.201001715Chusov, D., & List, B. (2014). Reductive Amination without an External Hydrogen Source. Angewandte Chemie International Edition, n/a-n/a. doi:10.1002/anie.201400059Chusov, D., & List, B. (2014). Reduktive Aminierung ohne externe Wasserstoffquelle. Angewandte Chemie, 126(20), 5299-5302. doi:10.1002/ange.201400059Raoufmoghaddam, S. (2014). Recent advances in catalytic C–N bond formation: a comparison of cascade hydroaminomethylation and reductive amination reactions with the corresponding hydroamidomethylation and reductive amidation reactions. Organic & Biomolecular Chemistry, 12(37), 7179. doi:10.1039/c4ob00620hJagadeesh, R. V., Murugesan, K., Alshammari, A. S., Neumann, H., Pohl, M.-M., Radnik, J., & Beller, M. (2017). MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science, 358(6361), 326-332. doi:10.1126/science.aan6245Hamada, H., Yamamoto, M., Kuwahara, Y., Matsuzaki, T., & Wakabayashi, K. (1985). The Co-amination of Phenol and Cyclohexanol with Palladium-on-carbon Catalyst in the Liquid Phase. An Application of a Hydrogen-transfer Reaction. Bulletin of the Chemical Society of Japan, 58(5), 1551-1555. doi:10.1246/bcsj.58.1551Chen, Z., Zeng, H., Gong, H., Wang, H., & Li, C.-J. (2015). Palladium-catalyzed reductive coupling of phenols with anilines and amines: efficient conversion of phenolic lignin model monomers and analogues to cyclohexylamines. Chemical Science, 6(7), 4174-4178. doi:10.1039/c5sc00941cCui, X., Junge, K., & Beller, M. (2016). Palladium-Catalyzed Synthesis of Alkylated Amines from Aryl Ethers or Phenols. ACS Catalysis, 6(11), 7834-7838. doi:10.1021/acscatal.6b01687Yan, L., Liu, X.-X., & Fu, Y. (2016). N-Alkylation of amines with phenols over highly active heterogeneous palladium hydride catalysts. RSC Advances, 6(111), 109702-109705. doi:10.1039/c6ra22383dZimmermann, B., Herwig, J., & Beller, M. (1999). The First Efficient Hydroaminomethylation with Ammonia: With Dual Metal Catalysts and Two-Phase Catalysis to Primary Amines. Angewandte Chemie International Edition, 38(16), 2372-2375. doi:10.1002/(sici)1521-3773(19990816)38:163.0.co;2-hZimmermann, B., Herwig, J., & Beller, M. (1999). Erste effiziente Hydroaminomethylierung mit Ammoniak: mit dualen Metallkatalysatoren und Zweiphasenkatalyse zu primären Aminen. Angewandte Chemie, 111(16), 2515-2518. doi:10.1002/(sici)1521-3757(19990816)111:163.0.co;2-aHartwig, J. F. (2002). CHEMICAL SYNTHESIS: Raising the Bar for the. Science, 297(5587), 1653-1654. doi:10.1126/science.1076371Ahmed, M., Seayad, A. M., Jackstell, R., & Beller, M. (2003). Amines Made Easily:  A Highly Selective Hydroaminomethylation of Olefins. Journal of the American Chemical Society, 125(34), 10311-10318. doi:10.1021/ja030143wAhmed, M., Buch, C., Routaboul, L., Jackstell, R., Klein, H., Spannenberg, A., & Beller, M. (2007). Hydroaminomethylation with Novel Rhodium–Carbene complexes: An Efficient Catalytic Approach to Pharmaceuticals. Chemistry - A European Journal, 13(5), 1594-1601. doi:10.1002/chem.200601155Crozet, D., Urrutigoïty, M., & Kalck, P. (2011). Recent Advances in Amine Synthesis by Catalytic Hydroaminomethylation of Alkenes. ChemCatChem, 3(7), 1102-1118. doi:10.1002/cctc.201000411Gülak, S., Wu, L., Liu, Q., Franke, R., Jackstell, R., & Beller, M. (2014). Phosphine‐ and Hydrogen‐Free: Highly Regioselective Ruthenium‐Catalyzed Hydroaminomethylation of Olefins. Angewandte Chemie International Edition, 53(28), 7320-7323. doi:10.1002/anie.201402368Gülak, S., Wu, L., Liu, Q., Franke, R., Jackstell, R., & Beller, M. (2014). Phosphine‐ and Hydrogen‐Free: Highly Regioselective Ruthenium‐Catalyzed Hydroaminomethylation of Olefins. Angewandte Chemie, 126(28), 7448-7451. doi:10.1002/ange.201402368Chen, C., Dong, X.-Q., & Zhang, X. (2016). Recent progress in rhodium-catalyzed hydroaminomethylation. Organic Chemistry Frontiers, 3(10), 1359-1370. doi:10.1039/c6qo00233aFleischer, I., Gehrtz, P., Hirschbeck, V., & Ciszek, B. (2016). Carbonylations of Alkenes in the Total Synthesis of Natural Compounds. Synthesis, 48(11), 1573-1596. doi:10.1055/s-0035-1560431Kobayashi, S., & Ishitani, H. (1999). Catalytic Enantioselective Addition to Imines. Chemical Reviews, 99(5), 1069-1094. doi:10.1021/cr980414zLipshutz, B. H., & Shimizu, H. (2004). Copper(I)-Catalyzed Asymmetric Hydrosilylations of Imines at Ambient Temperatures. Angewandte Chemie International Edition, 43(17), 2228-2230. doi:10.1002/anie.200353294Lipshutz, B. H., & Shimizu, H. (2004). Copper(I)-Catalyzed Asymmetric Hydrosilylations of Imines at Ambient Temperatures. Angewandte Chemie, 116(17), 2278-2280. doi:10.1002/ange.200353294Nolin, K. A., Ahn, R. W., & Toste, F. D. (2005). Enantioselective Reduction of Imines Catalyzed by a Rhenium(V)−Oxo Complex. Journal of the American Chemical Society, 127(36), 12462-12463. doi:10.1021/ja050831aMršić, N., Minnaard, A. J., Feringa, B. L., & Vries, J. G. de. (2009). Iridium/Monodentate Phosphoramidite Catalyzed Asymmetric Hydrogenation ofN-Aryl Imines. Journal of the American Chemical Society, 131(24), 8358-8359. doi:10.1021/ja901961yNugent, T. C., & El-Shazly, M. (2010). Chiral Amine Synthesis - Recent Developments and Trends for Enamide Reduction, Reductive Amination, and Imine Reduction. Advanced Synthesis & Catalysis, 352(5), 753-819. doi:10.1002/adsc.200900719Xie, J.-H., Zhu, S.-F., & Zhou, Q.-L. (2011). Transition Metal-Catalyzed Enantioselective Hydrogenation of Enamines and Imines. Chemical Reviews, 111(3), 1713-1760. doi:10.1021/cr100218mZhou, S., Fleischer, S., Junge, K., & Beller, M. (2011). Cooperative Transition-Metal and Chiral Brønsted Acid Catalysis: Enantioselective Hydrogenation of Imines To Form Amines. Angewandte Chemie International Edition, 50(22), 5120-5124. doi:10.1002/anie.201100878Zhou, S., Fleischer, S., Junge, K., & Beller, M. (2011). Cooperative Transition-Metal and Chiral Brønsted Acid Catalysis: Enantioselective Hydrogenation of Imines To Form Amines. Angewandte Chemie, 123(22), 5226-5230. doi:10.1002/ange.201100878Bartoszewicz, A., Ahlsten, N., & Martín-Matute, B. (2013). Enantioselective Synthesis of Alcohols and Amines by Iridium-Catalyzed Hydrogenation, Transfer Hydrogenation, and Related Processes. Chemistry - A European Journal, 19(23), 7274-7302. doi:10.1002/chem.201202836Etayo, P., & Vidal-Ferran, A. (2013). Rhodium-catalysed asymmetric hydrogenation as a valuable synthetic tool for the preparation of chiral drugs. Chem. Soc. Rev., 42(2), 728-754. doi:10.1039/c2cs35410aLagaditis, P. O., Sues, P. E., Sonnenberg, J. F., Wan, K. Y., Lough, A. J., & Morris, R. H. (2014). Iron(II) Complexes Containing Unsymmetrical P–N–P′ Pincer Ligands for the Catalytic Asymmetric Hydrogenation of Ketones and Imines. Journal of the American Chemical Society, 136(4), 1367-1380. doi:10.1021/ja4082233Rossi, S., Benaglia, M., Massolo, E., & Raimondi, L. (2014). Organocatalytic strategies for enantioselective metal-free reductions. Catalysis Science & Technology, 4(9), 2708. doi:10.1039/c4cy00033aHopmann, K. H., & Bayer, A. (2014). Enantioselective imine hydrogenation with iridium-catalysts: Reactions, mechanisms and stereocontrol. Coordination Chemistry Reviews, 268, 59-82. doi:10.1016/j.ccr.2014.01.023Ghislieri, D., & Turner, N. J. (2013). Biocatalytic Approaches to the Synthesis of Enantiomerically Pure Chiral Amines. Topics in Catalysis, 57(5), 284-300. doi:10.1007/s11244-013-0184-1Schrittwieser, J. H., Velikogne, S., & Kroutil, W. (2015). Biocatalytic Imine Reduction and Reductive Amination of Ketones. Advanced Synthesis & Catalysis, 357(8), 1655-1685. doi:10.1002/adsc.201500213Zhu, C., Saito, K., Yamanaka, M., & Akiyama, T. (2015). Benzothiazoline: Versatile Hydrogen Donor for Organocatalytic Transfer Hydrogenation. Accounts of Chemical Research, 48(2), 388-398. doi:10.1021/ar500414xOku, T., & Ikariya, T. (2002). Enhanced Product Selectivity in Continuous N-Methylation of Amino Alcohols over Solid Acid–Base Catalysts with Supercritical Methanol. Angewandte Chemie International Edition, 41(18), 3476-3479. doi:10.1002/1521-3773(20020916)41:183.0.co;2-5Oku, T., Arita, Y., Tsuneki, H., & Ikariya, T. (2004). Continuous Chemoselective Methylation of Functionalized Amines and Diols with Supercritical Methanol over Solid Acid and Acid−Base Bifunctional Catalysts. Journal of the American Chemical Society, 126(23), 7368-7377. doi:10.1021/ja048557sHollmann, D., Bähn, S., Tillack, A., & Beller, M. (2007). A General Ruthenium-Catalyzed Synthesis of Aromatic Amines. Angewandte Chemie International Edition, 46(43), 8291-8294. doi:10.1002/anie.200703119Hollmann, D., Bähn, S., Tillack, A., & Beller, M. (2007). Eine allgemeine rutheniumkatalysierte Synthese von aromatischen Aminen. Angewandte Chemie, 119(43), 8440-8444. doi:10.1002/ange.200703119Hollmann, D., Bähn, S., Tillack, A., & Beller, M. (2008). N-Dealkylation of aliphatic amines and selective synthesis of monoalkylated aryl amines. Chemical Communications, (27), 3199. doi:10.1039/b803114bSaidi, O., Blacker, A. J., Farah, M. M., Marsden, S. P., & Williams, J. M. J. (2009). Selective Amine Cross-Coupling Using Iridium-Catalyzed «Borrowing Hydrogen» Methodology. Angewandte Chemie International Edition, 48(40), 7375-7378. doi:10.1002/anie.200904028Saidi, O., Blacker, A. J., Farah, M. M., Marsden, S. P., & Williams, J. M. J. (2009). Selective Amine Cross-Coupling Using Iridium-Catalyzed «Borrowing Hydrogen» Methodology. Angewandte Chemie, 121(40), 7511-7514. doi:10.1002/ange.200904028Guillena, G., Ramón, D. J., & Yus, M. (2009). Hydrogen Autotransfer in theN-Alkylation of Amines and Related Compounds using Alcohols and Amines as Electrophiles. Chemical Reviews, 110(3), 1611-1641. doi:10.1021/cr9002159Zhao, Y., Foo, S. W., & Saito, S. (2011). Iron/Amino Acid Catalyzed Direct N-Alkylation of Amines with Alcohols. Angewandte Chemie International Edition, 50(13), 3006-3009. doi:10.1002/anie.201006660Zhao, Y., Foo, S. W., & Saito, S. (2011). Iron/Amino Acid Catalyzed Direct N-Alkylation of Amines with Alcohols. Angewandte Chemie, 123(13), 3062-3065. doi:10.1002/ange.201006660Bähn, S., Imm, S., Neubert, L., Zhang, M., Neumann, H., & Beller, M. (2011). The Catalytic Amination of Alcohols. ChemCatChem, 3(12), 1853-1864. doi:10.1002/cctc.201100255Abarca, B., Adam, R., & Ballesteros, R. (2012). An efficient one pot transfer hydrogenation and N-alkylation of quinolines with alcohols mediated by Pd/C/Zn. Organic & Biomolecular Chemistry, 10(9), 1826. doi:10.1039/c1ob05888fYang, Q., Wang, Q., & Yu, Z. (2015). Substitution of alcohols by N-nucleophiles via transition metal-catalyzed dehydrogenation. Chemical Society Reviews, 44(8), 2305-2329. doi:10.1039/c4cs00496eYin, Z., Zeng, H., Wu, J., Zheng, S., & Zhang, G. (2016). Cobalt-Catalyzed Synthesis of Aromatic, Aliphatic, and Cyclic Secondary Amines via a «Hydrogen-Borrowing» Strategy. ACS Catalysis, 6(10), 6546-6550. doi:10.1021/acscatal.6b02218Arachchige, P. T. K., Lee, H., & Yi, C. S. (2018). Synthesis of Symmetric and Unsymmetric Secondary Amines from the Ligand-Promoted Ruthenium-Catalyzed Deaminative Coupling Reaction of Primary Amines. The Journal of Organic Chemistry, 83(9), 4932-4947. doi:10.1021/acs.joc.8b00649Müller, T. E., & Beller, M. (1998). Metal-Initiated Amination of Alkenes and Alkynes†. Chemical Reviews, 98(2), 675-704. doi:10.1021/cr960433dBeller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Catalytic Markovnikov and anti-Markovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends. Angewandte Chemie International Edition, 43(26), 3368-3398. doi:10.1002/anie.200300616Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Katalytische Markownikow- und Anti-Markownikow-Funktionalisierung von Alkenen und Alkinen. Angewandte Chemie, 116(26), 3448-3479. doi:10.1002/ange.200300616Müller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F., & Tada, M. (2008). Hydroamination: Direct Addition of Amines to Alkenes and Alkynes. Chemical Reviews, 108(9), 3795-3892. doi:10.1021/cr0306788Leyva-Pérez, A., Cabrero-Antonino, J. R., Cantín, A., & Corma, A. (2010). Gold(I) Catalyzes the Intermolecular Hydroamination of Alkynes with Imines and Produces α,α′,N-Triarylbisenamines: Studies on Their Use As Intermediates in Synthesis. The Journal of Organic Chemistry, 75(22), 7769-7780. doi:10.1021/jo101674tYim, J. C.-H., & Schafer, L. L. (2014). Efficient Anti-Markovnikov-Selective Catalysts for Intermolecular Alkyne Hydroamination: Recent Advances and Synthetic Applications. European Journal of Organic Chemistry, 2014(31), 6825-6840. doi:10.1002/ejoc.201402300Gui, J., Pan, C.-M., Jin, Y., Qin, T., Lo, J. C., Lee, B. J., … Baran, P. S. (2015). Practical olefin hydroamination with nitroarenes. Science, 348(6237), 886-891. doi:10.1126/science.aab0245Huang, L., Arndt, M., Gooßen, K., Heydt, H., & Gooßen, L. J. (2015). Late Transi

    Gold(I) catalyses the intermolecular hydroenamination of alkynes with imines and produces alfa,alfa',N-triarylbisenamines: studies on their use as intermediates in synthesis

    Full text link
    [EN] alpha,alpha',N-Tnarylbisenamines have been efficiently formed and isolated for the first time The synthesis is based on an unprecedented gold(I)-catalyzed double intermolecular hydroamination between N-arylamines and aryl alkynes This reaction constitutes a new example of the intriguing behavior of gold as catalyst in organic synthesis The reactivity of these bisenamines for three different reactions, leading to potentially useful intermediates, is also shown In particular, hindered azabicycles [3 2 0], which present excellent UVA and UVB absorption properties, are obtained by addition of triarylbisenamines to propiolates following an unexpected mechanismThis work is dedicated to Prof Steven V Ley on the occasion of his 65th birthday A L-P thanks CSIC for a contract under the JAE-doctors program Financial support by the PLE2009 project form MCIINN and PRO-METEO from Generalitat Valenciana are also acknowledged We thank Dr I Andreu for discussions on UV results The Continuous support from the ITQ's NMR team is also particularly appreciatedLeyva Perez, A.; Cabrero Antonino, JR.; Cantin Sanz, A.; Corma Canós, A. (2010). Gold(I) catalyses the intermolecular hydroenamination of alkynes with imines and produces alfa,alfa',N-triarylbisenamines: studies on their use as intermediates in synthesis. The Journal of Organic Chemistry. 75(22):7769-7780. doi:10.1021/jo101674tS77697780752

    Reductive N-methylation of amines using dimethyl carbonate and molecular hydrogen: Mechanistic insights through kinetic modelling

    Full text link
    [EN] Kinetic analysis of ruthenium-catalyzed reductive N-methylation of amines using dimethyl carbonate as C1 source and molecular hydrogen as reductant has been performed. Kinetic equations have been derived and kinetic modelling has been performed for experimental data generated previously at a constant hydrogen pressure as well as for additional experiments performed at different hydrogen pressures. The study has revealed interesting kinetic features related to an induction period strongly influenced by temperature. A kinetic model has been proposed based on advanced reaction mechanism featuring transformation between different type of catalytic species and inactivation of them during the reaction. Kinetic modelling was done for all data sets together showing excellent correspondence between calculations and experiments.Cabrero Antonino, JR.; Adam-Ortiz, R.; Wärnå, J.; Murzin, DY.; Beller, M. (2018). Reductive N-methylation of amines using dimethyl carbonate and molecular hydrogen: Mechanistic insights through kinetic modelling. Chemical Engineering Journal. 351:1129-1136. https://doi.org/10.1016/j.cej.2018.06.174S1129113635

    Tuning the Microenvironment of Gold Nanoparticles Encapsulated within MIL-101(Cr) for the Selective Oxidation of Alcohols with O-2: Influence of the Amino Terephthalate Linker

    Full text link
    This is the peer reviewed version of the following article: Chem. Eur. J. 2019, 25, 9280 9286, which has been published in final form at https://doi.org/10.1002/chem.201901361. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] This manuscript reports a comparative study of the catalytic performance of gold nanoparticles (NPs) encapsulated within MIL-101(Cr) with or without amino groups in the terephthalate linker. The purpose is to show how the amino groups can influence the microenvironment and catalytic stability of incorporated gold nanoparticles. The first influence of the presence of this substituent is the smaller particle size of Au NPs hosted in MIL-101(Cr)-NH2 (2.45 +/- 0.19 nm) compared with the parent MIL-101(Cr)-H (3.02 +/- 0.39 nm). Both materials are highly active to promote the aerobic alcohol oxidation and exhibit a wide substrate scope. Although both catalysts can achieve turnover numbers as high as 10(6) for the solvent-free aerobic oxidation of benzyl alcohol, Au@MIL-101(Cr)-NH2 exhibits higher turnover frequency values (12 000 h(-1)) than Au@MIL-101(Cr)-H (6800 h(-1)). Au@MIL-101(Cr)-NH2 also exhibits higher catalytic stability, being recyclable for 20 times with coincident temporal conversion profiles, in comparison with some decay observed in the parent Au@MIL-101(Cr)-H. Characterization by transmission electron microscopy of the 20-times used samples shows a very minor particle size increase in the case of Au@MIL-101(Cr)-NH2 (2.97 +/- 0.27 nm) in comparison with the Au@MIL-101(Cr)-H analog (5.32 +/- 0.72 nm). The data presented show the potential of better control of the microenvironment to improve the performance of encapsulated Au nanoparticles.Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, CTQ2015-65963-CQ-R1 and CTQ2014-53292-R) is gratefully acknowledged. Generalidad Valenciana is also thanked for funding (Prometeo 2017/083). S.N. thanks financial support by the Fundacijn Ramjn Areces (XVIII Concurso Nacional para la Adjudicacijn de Ayudas a la Investigacijn en Ciencias de la Vida y de la Materia, 2016).Santiago-Portillo, A.; Cabrero-Antonino, M.; Alvaro Rodríguez, MM.; Navalón Oltra, S.; García Gómez, H. (2019). Tuning the Microenvironment of Gold Nanoparticles Encapsulated within MIL-101(Cr) for the Selective Oxidation of Alcohols with O-2: Influence of the Amino Terephthalate Linker. Chemistry - A European Journal. 25(39):9280-9286. https://doi.org/10.1002/chem.201901361S928092862539H�ft, E., Kosslick, H., Fricke, R., & Hamann, H.-J. (1996). Titanhaltige Molekularsiebe als Katalysatoren f�r selektive Oxidationsreaktionen mit Wasserstoffperoxid. Journal f�r Praktische Chemie/Chemiker-Zeitung, 338(1), 1-15. doi:10.1002/prac.19963380102Matsumoto, T., Ueno, M., Wang, N., & Kobayashi, S. (2008). Recent Advances in Immobilized Metal Catalysts for Environmentally Benign Oxidation of Alcohols. Chemistry - An Asian Journal, 3(2), 196-214. doi:10.1002/asia.200700359Saikia, M., Bhuyan, D., & Saikia, L. (2015). Facile synthesis of Fe3O4nanoparticles on metal organic framework MIL-101(Cr): characterization and catalytic activity. New Journal of Chemistry, 39(1), 64-67. doi:10.1039/c4nj01312cCorma, A., & Garcia, H. (2008). Supported gold nanoparticles as catalysts for organic reactions. Chemical Society Reviews, 37(9), 2096. doi:10.1039/b707314nParmeggiani, C., & Cardona, F. (2012). Transition metal based catalysts in the aerobic oxidation of alcohols. Green Chemistry, 14(3), 547. doi:10.1039/c2gc16344fStahl, S. S. (2004). Palladium Oxidase Catalysis: Selective Oxidation of Organic Chemicals by Direct Dioxygen-Coupled Turnover. Angewandte Chemie International Edition, 43(26), 3400-3420. doi:10.1002/anie.200300630Dhakshinamoorthy, A., & Garcia, H. (2012). Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 41(15), 5262. doi:10.1039/c2cs35047eAlhumaimess, M., Lin, Z., He, Q., Lu, L., Dimitratos, N., Dummer, N. F., … Hutchings, G. J. (2014). Oxidation of Benzyl Alcohol and Carbon Monoxide Using Gold Nanoparticles Supported on MnO2Nanowire Microspheres. Chemistry - A European Journal, 20(6), 1701-1710. doi:10.1002/chem.201303355Buonerba, A., Cuomo, C., Ortega Sánchez, S., Canton, P., & Grassi, A. (2011). Gold Nanoparticles Incarcerated in Nanoporous Syndiotactic Polystyrene Matrices as New and Efficient Catalysts for Alcohol Oxidations. Chemistry - A European Journal, 18(2), 709-715. doi:10.1002/chem.201101034Costa, V. V., Estrada, M., Demidova, Y., Prosvirin, I., Kriventsov, V., Cotta, R. F., … Gusevskaya, E. V. (2012). Gold nanoparticles supported on magnesium oxide as catalysts for the aerobic oxidation of alcohols under alkali-free conditions. Journal of Catalysis, 292, 148-156. doi:10.1016/j.jcat.2012.05.009Zhang, W., Xiao, Z., Wang, J., Fu, W., Tan, R., & Yin, D. (2019). Selective Aerobic Oxidation of Alcohols over Gold‐Palladium Alloy Catalysts Using Air at Atmospheric Pressure in Water. ChemCatChem, 11(6), 1779-1788. doi:10.1002/cctc.201900015Liu, X. Y., Wang, A., Zhang, T., & Mou, C.-Y. (2013). Catalysis by gold: New insights into the support effect. Nano Today, 8(4), 403-416. doi:10.1016/j.nantod.2013.07.005Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2016). Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coordination Chemistry Reviews, 312, 99-148. doi:10.1016/j.ccr.2015.12.005Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2017). Metal Organic Frameworks as Versatile Hosts of Au Nanoparticles in Heterogeneous Catalysis. ACS Catalysis, 7(4), 2896-2919. doi:10.1021/acscatal.6b03386Howarth, A. J., Liu, Y., Li, P., Li, Z., Wang, T. C., Hupp, J. T., & Farha, O. K. (2016). Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 1(3). doi:10.1038/natrevmats.2015.18Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080fLeus, K., Concepcion, P., Vandichel, M., Meledina, M., Grirrane, A., Esquivel, D., … Van Der Voort, P. (2015). Au@UiO-66: a base free oxidation catalyst. RSC Advances, 5(29), 22334-22342. doi:10.1039/c4ra16800cSaikia, M., Kaichev, V., & Saikia, L. (2016). Gold nanoparticles supported on nanoscale amine-functionalized MIL-101(Cr) as a highly active catalyst for epoxidation of styrene. RSC Advances, 6(108), 106856-106865. doi:10.1039/c6ra24458kLiu, H., Liu, Y., Li, Y., Tang, Z., & Jiang, H. (2010). Metal−Organic Framework Supported Gold Nanoparticles as a Highly Active Heterogeneous Catalyst for Aerobic Oxidation of Alcohols. The Journal of Physical Chemistry C, 114(31), 13362-13369. doi:10.1021/jp105666fLammert, M., Bernt, S., Vermoortele, F., De Vos, D. E., & Stock, N. (2013). Single- and Mixed-Linker Cr-MIL-101 Derivatives: A High-Throughput Investigation. Inorganic Chemistry, 52(15), 8521-8528. doi:10.1021/ic4005328Zhu, Q.-L., Li, J., & Xu, Q. (2013). Immobilizing Metal Nanoparticles to Metal–Organic Frameworks with Size and Location Control for Optimizing Catalytic Performance. Journal of the American Chemical Society, 135(28), 10210-10213. doi:10.1021/ja403330mChen, Y. F., Babarao, R., Sandler, S. I., & Jiang, J. W. (2010). Metal−Organic Framework MIL-101 for Adsorption and Effect of Terminal Water Molecules: From Quantum Mechanics to Molecular Simulation. Langmuir, 26(11), 8743-8750. doi:10.1021/la904502hFerey, G. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275Santiago-Portillo, A., Navalón, S., Cirujano, F. G., Xamena, F. X. L. i, Alvaro, M., & Garcia, H. (2015). MIL-101 as Reusable Solid Catalyst for Autoxidation of Benzylic Hydrocarbons in the Absence of Additional Oxidizing Reagents. ACS Catalysis, 5(6), 3216-3224. doi:10.1021/acscatal.5b00411Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution. Journal of Physical and Chemical Reference Data, 17(2), 513-886. doi:10.1063/1.555805Clifton, C. L., & Huie, R. E. (1989). Rate constants for hydrogen abstraction reactions of the sulfate radical, SO4?. Alcohols. International Journal of Chemical Kinetics, 21(8), 677-687. doi:10.1002/kin.550210807Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2017). Tuneable nature of metal organic frameworks as heterogeneous solid catalysts for alcohol oxidation. Chemical Communications, 53(79), 10851-10869. doi:10.1039/c7cc05927bCancino, P., Vega, A., Santiago-Portillo, A., Navalon, S., Alvaro, M., Aguirre, P., … García, H. (2016). A novel copper(ii)–lanthanum(iii) metal organic framework as a selective catalyst for the aerobic oxidation of benzylic hydrocarbons and cycloalkenes. Catalysis Science & Technology, 6(11), 3727-3736. doi:10.1039/c5cy01448dGómez-Paricio, A., Santiago-Portillo, A., Navalón, S., Concepción, P., Alvaro, M., & Garcia, H. (2016). MIL-101 promotes the efficient aerobic oxidative desulfurization of dibenzothiophenes. Green Chemistry, 18(2), 508-515. doi:10.1039/c5gc00862

    Heterogeneous Pd-Catalyzed Efficient Synthesis of Imidazolones via Dehydrogenative Condensation between Ureas and 1,2-Diols

    Full text link
    [EN] A heterogeneously catalyzed protocol for the acceptorless dehydrogenative condensation between N,N'-disubstituted ureas and 1,2-diols to afford imidazolones was developed. Palladium nanoaggregates stabilized onto an alumina matrix with suitable acidic properties, namely, [Pd/Al2O3], was designed and successfully applied as efficient and reusable heterogeneous nanocatalyst for this relevant transformation. The methodology developed showed its wide applicability through the synthesis of more than 25 imidazolones with moderate to good yields, reaching a turnover number (TON) of up to 19444 and a initial turnover frequency (TOF0) > 290 h(-1). The active nanostructured catalyst was fully characterized [X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), high-resolution scanning transmission electron microscopy (HR-STEM), energy-dispersive X-ray (EDX), Raman spectroscopy, temperature-programmed reduction (TPR), temperature-programmed desorption (TPD)-NH3, TPD-CO2, X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) area], and mechanistic studies were performed. Moreover, other related Pd-based nanomaterials composed of different acidic or basic inorganic supports were synthesized and extensively compared in this reaction. These studies revealed that the presence of Pd nanoparticles with a wide range of sizes (average particle size 2.8 nm) over a metal oxide support with a high density of acid sites is a key point for the good activity of the material, gamma-Al2O3 being the optimum support. Furthermore, a Pd-Zn cooperation effect was described for the dehydrogenative condensation of unactivated 1,2-diols, including ethylene glycol, with ureas. Two Pd-Zn bimetallic materials ([Pd/ZnO] and [Pd(5%)-Zn(5%)/Al2O3) were also designed and characterized properly. These materials, as well as the [Pd/Al2O3] system in combination with catalytic amounts of ZnO, showed good activity and selectivity in the acceptorless dehydrogenative condensation between ureas and unactivated 1,2-diols. The heterogeneous nature of all of the described catalytic systems was demonstrated, and the reusability of the catalysts was proven.This work was supported by the SEJI program funded by Generalitat Valenciana (Subvencions Excelencia Juniors Investigadors, grants SEJI/2019/006 and SEJI/2020/013), RETOS I+D+I program from MICINN (PID2019-109656RA-I0/AEI/10.13039/501100011033), and a program from "La Caixa" Foundation (ID 100010434), fellowship code LCF/BQ/PI18/11630023. J.R.C.-A. and R.A. are grateful to MICINN (Spanish Government) for two Ramon y Cajal contracts (ref RYC-2017-22717 and RYC2020-029493-I). The authors thank Dr. Maria Cabrero-Antonino for the fruitful discussions.Arango-Daza, JC.; Lluna-Galán, C.; Izquierdo-Aranda, L.; Cabrero Antonino, JR.; Adam, R. (2022). Heterogeneous Pd-Catalyzed Efficient Synthesis of Imidazolones via Dehydrogenative Condensation between Ureas and 1,2-Diols. ACS Catalysis. 12(12):6906-6922. https://doi.org/10.1021/acscatal.2c0142369066922121

    Iron(III) Triflimide as a catalytic substitute for gold(I) in hydroaddition reactions to unsaturated carbon-carbon bonds

    Full text link
    [EN] In this work it is shown that iron(III) and gold(I) triflimide efficiently catalyze the hydroaddition of a wide array of nucleophiles including water, alcohols, thiols, amines, alkynes, and alkenes to multiple CC bonds. The study of the catalytic activity and selectivity of iron(III), gold(I), and BrOnsted triflimides has unveiled that iron(III) triflimide [Fe(NTf2)3] is a robust catalyst under heating conditions, whereas gold(I) triflimide, even stabilized by PPh3, readily decomposes at 80 degrees C and releases triflimidic acid (HNTf2) that can catalyze the corresponding reaction, as shown by in situ 19F, 15N, and 31PNMR spectroscopy. The results presented here demonstrate that each of the two catalyst types has weaknesses and strengths and complement each other. Iron(III) triflimide can act as a substitute of gold(I) triflimide as a catalyst for hydroaddition reactions to unsaturated carbon-carbon bonds.The work has been supported by Consolider-Ingenio 2010 (proyecto MULTICAT). J.R.C.A. thanks MCIINN for the concession of a pre-doctoral FPU fellowship. A. L. P. thanks ITQ for financial support.Cabrero Antonino, JR.; Leyva Perez, A.; Corma Canós, A. (2013). Iron(III) Triflimide as a catalytic substitute for gold(I) in hydroaddition reactions to unsaturated carbon-carbon bonds. Chemistry - A European Journal. 19(26):8627-8633. https://doi.org/10.1002/chem.201300386S862786331926Brenzovich, W. E. (2012). Gold in der Totalsynthese: Alkine als Carbonylersatz. Angewandte Chemie, 124(36), 9063-9065. doi:10.1002/ange.201204598Brenzovich, W. E. (2012). Gold in Total Synthesis: Alkynes as Carbonyl Surrogates. Angewandte Chemie International Edition, 51(36), 8933-8935. doi:10.1002/anie.201204598Oliver-Meseguer, J., Cabrero-Antonino, J. R., Dominguez, I., Leyva-Perez, A., & Corma, A. (2012). Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 107 at Room Temperature. Science, 338(6113), 1452-1455. doi:10.1126/science.1227813Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414uKrause, N., & Winter, C. (2011). Gold-Catalyzed Nucleophilic Cyclization of Functionalized Allenes: A Powerful Access to Carbo- and Heterocycles. Chemical Reviews, 111(3), 1994-2009. doi:10.1021/cr1004088Huang, H., Zhou, Y., & Liu, H. (2011). Recent advances in the gold-catalyzed additions to C–C multiple bonds. Beilstein Journal of Organic Chemistry, 7, 897-936. doi:10.3762/bjoc.7.103Hashmi, A. S. K. (2010). Homogene Gold-Katalyse jenseits von Vermutungen und Annahmen - charakterisierte Intermediate. Angewandte Chemie, 122(31), 5360-5369. doi:10.1002/ange.200907078Hashmi, A. S. K. (2010). Homogeneous Gold Catalysis Beyond Assumptions and Proposals-Characterized Intermediates. Angewandte Chemie International Edition, 49(31), 5232-5241. doi:10.1002/anie.200907078Beaumont, S. K., Kyriakou, G., & Lambert, R. M. (2010). Identity of the Active Site in Gold Nanoparticle-Catalyzed Sonogashira Coupling of Phenylacetylene and Iodobenzene. Journal of the American Chemical Society, 132(35), 12246-12248. doi:10.1021/ja1063179Marion, N., Ramón, R. S., & Nolan, S. P. (2009). [(NHC)AuI]-Catalyzed Acid-Free Alkyne Hydration at Part-per-Million Catalyst Loadings. Journal of the American Chemical Society, 131(2), 448-449. doi:10.1021/ja809403eGrirrane, A., Corma, A., & Garcia, H. (2008). Gold-Catalyzed Synthesis of Aromatic Azo Compounds from Anilines and Nitroaromatics. Science, 322(5908), 1661-1664. doi:10.1126/science.1166401Corma, A., & Garcia, H. (2008). Supported gold nanoparticles as catalysts for organic reactions. Chemical Society Reviews, 37(9), 2096. doi:10.1039/b707314nGonzález-Arellano, C., Abad, A., Corma, A., García, H., Iglesias, M., & Sánchez, F. (2007). Catalysis by Gold(I) and Gold(III): A Parallelism between Homo- and Heterogeneous Catalysts for Copper-Free Sonogashira Cross-Coupling Reactions. Angewandte Chemie, 119(9), 1558-1560. doi:10.1002/ange.200604746González-Arellano, C., Abad, A., Corma, A., García, H., Iglesias, M., & Sánchez, F. (2007). Catalysis by Gold(I) and Gold(III): A Parallelism between Homo- and Heterogeneous Catalysts for Copper-Free Sonogashira Cross-Coupling Reactions. Angewandte Chemie International Edition, 46(9), 1536-1538. doi:10.1002/anie.200604746Hashmi, A. S. K. (2007). Gold-Catalyzed Organic Reactions. Chemical Reviews, 107(7), 3180-3211. doi:10.1021/cr000436xWienhöfer, G., Westerhaus, F. A., Jagadeesh, R. V., Junge, K., Junge, H., & Beller, M. (2012). Selective iron-catalyzed transfer hydrogenation of terminal alkynes. Chemical Communications, 48(40), 4827. doi:10.1039/c2cc31091kCabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2012). Iron-Catalysed Markovnikov Hydrothiolation of Styrenes. Advanced Synthesis & Catalysis, 354(4), 678-687. doi:10.1002/adsc.201100731Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2012). Regioselective Hydration of Alkynes by Iron(III) Lewis/Brønsted Catalysis. Chemistry - A European Journal, 18(35), 11107-11114. doi:10.1002/chem.201200580Boddien, A., Mellmann, D., Gartner, F., Jackstell, R., Junge, H., Dyson, P. J., … Beller, M. (2011). Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst. Science, 333(6050), 1733-1736. doi:10.1126/science.1206613Sun, C.-L., Li, B.-J., & Shi, Z.-J. (2011). Direct C−H Transformation via Iron Catalysis. Chemical Reviews, 111(3), 1293-1314. doi:10.1021/cr100198wJunge, K., Schröder, K., & Beller, M. (2011). Homogeneous catalysis using iron complexes: recent developments in selective reductions. Chemical Communications, 47(17), 4849. doi:10.1039/c0cc05733aZhou, S., Fleischer, S., Junge, K., Das, S., Addis, D., & Beller, M. (2010). Asymmetrische Synthese von Aminen: eine allgemeine und effiziente eisenkatalysierte enantioselektive Transferhydrierung von Iminen. Angewandte Chemie, 122(44), 8298-8302. doi:10.1002/ange.201002456Zhou, S., Fleischer, S., Junge, K., Das, S., Addis, D., & Beller, M. (2010). Enantioselective Synthesis of Amines: General, Efficient Iron-Catalyzed Asymmetric Transfer Hydrogenation of Imines. Angewandte Chemie International Edition, 49(44), 8121-8125. doi:10.1002/anie.201002456Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2010). Iron-Catalysed Regio- and Stereoselective Head-to-Tail Dimerisation of Styrenes. Advanced Synthesis & Catalysis, 352(10), 1571-1576. doi:10.1002/adsc.201000096Zhou, S., Junge, K., Addis, D., Das, S., & Beller, M. (2009). A Convenient and General Iron-Catalyzed Reduction of Amides to Amines. Angewandte Chemie, 121(50), 9671-9674. doi:10.1002/ange.200904677Zhou, S., Junge, K., Addis, D., Das, S., & Beller, M. (2009). A Convenient and General Iron-Catalyzed Reduction of Amides to Amines. Angewandte Chemie International Edition, 48(50), 9507-9510. doi:10.1002/anie.200904677Kohno, K., Nakagawa, K., Yahagi, T., Choi, J.-C., Yasuda, H., & Sakakura, T. (2009). Fe(OTf)3-Catalyzed Addition of sp C−H Bonds to Olefins. Journal of the American Chemical Society, 131(8), 2784-2785. doi:10.1021/ja8090593Correa, A., García Mancheño, O., & Bolm, C. (2008). Iron-catalysed carbon–heteroatom and heteroatom–heteroatom bond forming processes. Chemical Society Reviews, 37(6), 1108. doi:10.1039/b801794hMichaux, J., Terrasson, V., Marque, S., Wehbe, J., Prim, D., & Campagne, J.-M. (2007). Intermolecular FeCl3-Catalyzed Hydroamination of Styrenes. European Journal of Organic Chemistry, 2007(16), 2601-2603. doi:10.1002/ejoc.200700023Bolm, C., Legros, J., Le Paih, J., & Zani, L. (2004). Iron-Catalyzed Reactions in Organic Synthesis. Chemical Reviews, 104(12), 6217-6254. doi:10.1021/cr040664hFürstner, A., Leitner, A., Méndez, M., & Krause, H. (2002). Iron-Catalyzed Cross-Coupling Reactions. Journal of the American Chemical Society, 124(46), 13856-13863. doi:10.1021/ja027190tKischel, J., Jovel, I., Mertins, K., Zapf, A., & Beller, M. (2006). A Convenient FeCl3-Catalyzed Hydroarylation of Styrenes. Organic Letters, 8(1), 19-22. doi:10.1021/ol0523143Patil, N. T., Kavthe, R. D., & Shinde, V. S. (2012). Transition metal-catalyzed addition of C-, N- and O-nucleophiles to unactivated C–C multiple bonds. Tetrahedron, 68(39), 8079-8146. doi:10.1016/j.tet.2012.05.125Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Katalytische Markownikow- und Anti-Markownikow-Funktionalisierung von Alkenen und Alkinen. Angewandte Chemie, 116(26), 3448-3479. doi:10.1002/ange.200300616Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Catalytic Markovnikov and anti-Markovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends. Angewandte Chemie International Edition, 43(26), 3368-3398. doi:10.1002/anie.200300616Hashmi, A. S. K. (2007). Homogeneous gold catalysis: The role of protons. Catalysis Today, 122(3-4), 211-214. doi:10.1016/j.cattod.2006.10.006Hashmi, A. S. K., Schwarz, L., Rubenbauer, P., & Blanco, M. C. (2006). The Condensation of Carbonyl Compounds with Electron-Rich Arenes: Mercury, Thallium, Gold or a Proton? Advanced Synthesis & Catalysis, 348(6), 705-708. doi:10.1002/adsc.200505464Williamson, K. S., & Yoon, T. P. (2012). Iron Catalyzed Asymmetric Oxyamination of Olefins. Journal of the American Chemical Society, 134(30), 12370-12373. doi:10.1021/ja3046684Hashmi, A. S. K., Braun, I., Nösel, P., Schädlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Eine einfache Gold-katalysierte Synthese von Benzofulvenen -gem-diaurierte Spezies als «Instant-Dual-Activation»-Präkatalysatoren. Angewandte Chemie, 124(18), 4532-4536. doi:10.1002/ange.201109183Hashmi, A. S. K., Braun, I., Nösel, P., Schädlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Simple Gold-Catalyzed Synthesis of Benzofulvenes-gem-Diaurated Species as «Instant Dual-Activation» Precatalysts. Angewandte Chemie International Edition, 51(18), 4456-4460. doi:10.1002/anie.201109183Antoniotti, S., Dalla, V., & Duñach, E. (2010). Metalltriflimidate sind bessere Katalysatoren für die organische Synthese als Metalltriflate - der Effekt eines stark delokalisierten Gegenions. Angewandte Chemie, 122(43), 8032-8060. doi:10.1002/ange.200906407Antoniotti, S., Dalla, V., & Duñach, E. (2010). Metal Triflimidates: Better than Metal Triflates as Catalysts in Organic Synthesis-The Effect of a Highly Delocalized Counteranion. Angewandte Chemie International Edition, 49(43), 7860-7888. doi:10.1002/anie.200906407Ricard, L., & Gagosz, F. (2007). Synthesis and Reactivity of Air-Stable N-Heterocyclic Carbene Gold(I) Bis(trifluoromethanesulfonyl)imidate Complexes. Organometallics, 26(19), 4704-4707. doi:10.1021/om7006002Dang, T. T., Boeck, F., & Hintermann, L. (2011). Hidden Brønsted Acid Catalysis: Pathways of Accidental or Deliberate Generation of Triflic Acid from Metal Triflates. The Journal of Organic Chemistry, 76(22), 9353-9361. doi:10.1021/jo201631xTaylor, J. G., Adrio, L. A., & Hii, K. K. (Mimi). (2010). Hydroamination reactions by metal triflates: Brønsted acid vs. metal catalysis? Dalton Trans., 39(5), 1171-1175. doi:10.1039/b918970jKovács, G., Lledós, A., & Ujaque, G. (2010). Mechanistic Comparison of Acid- and Gold(I)-Catalyzed Nucleophilic Addition Reactions to Olefins. Organometallics, 29(22), 5919-5926. doi:10.1021/om1007192Li, Z., Zhang, J., Brouwer, C., Yang, C.-G., Reich, N. W., & He, C. (2006). Brønsted Acid Catalyzed Addition of Phenols, Carboxylic Acids, and Tosylamides to Simple Olefins. Organic Letters, 8(19), 4175-4178. doi:10.1021/ol0610035(s. f.). doi:10.1021/ol061174Wabnitz, T. C., Yu, J.-Q., & Spencer, J. B. (2004). Evidence That Protons Can Be the Active Catalysts in Lewis Acid Mediated Hetero-Michael Addition Reactions. Chemistry - A European Journal, 10(2), 484-493. doi:10.1002/chem.200305407Penzien, J., Su, R. Q., & Müller, T. E. (2002). The role of protons in hydroamination reactions involving homogeneous and heterogeneous catalysts. Journal of Molecular Catalysis A: Chemical, 182-183, 489-498. doi:10.1016/s1381-1169(01)00496-4Weïwer, M., Coulombel, L., & Duñach, E. (2006). Regioselective indium(iii) trifluoromethanesulfonate-catalyzed hydrothiolation of non-activated olefins. Chem. Commun., (3), 332-334. doi:10.1039/b513946eLeyva, A., & Corma, A. (2009). Isolable Gold(I) Complexes Having One Low-Coordinating Ligand as Catalysts for the Selective Hydration of Substituted Alkynes at Room Temperature without Acidic Promoters. The Journal of Organic Chemistry, 74(5), 2067-2074. doi:10.1021/jo802558eLeyva, A., & Corma, A. (2009). Reusable Gold(I) Catalysts with Unique Regioselectivity for Intermolecular Hydroamination of Alkynes. Advanced Synthesis & Catalysis, 351(17), 2876-2886. doi:10.1002/adsc.200900491Arvai, R., Toulgoat, F., Langlois, B. R., Sanchez, J.-Y., & Médebielle, M. (2009). A simple access to metallic or onium bistrifluoromethanesulfonimide salts. Tetrahedron, 65(27), 5361-5368. doi:10.1016/j.tet.2009.04.068Hashmi, A. S. K., Blanco, M. C., Fischer, D., & Bats, J. W. (2006). Gold Catalysis: Evidence for the In-situ Reduction of Gold(III) During the Cyclization of Allenyl Carbinols. European Journal of Organic Chemistry, 2006(6), 1387-1389. doi:10.1002/ejoc.200600009Morita, N., & Krause, N. (2006). Erste goldkatalysierte C-S-Bindungsknüpfung: Cycloisomerisierung von α-Thioallenen zu 2,5-Dihydrothiophenen. Angewandte Chemie, 118(12), 1930-1933. doi:10.1002/ange.200503846Morita, N., & Krause, N. (2006). The First Gold-Catalyzed CS Bond Formation: Cycloisomerization of α-Thioallenes to 2,5-Dihydrothiophenes. Angewandte Chemie International Edition, 45(12), 1897-1899. doi:10.1002/anie.200503846Santos, L. L., Ruiz, V. R., Sabater, M. J., & Corma, A. (2008). Regioselective transformation of alkynes into cyclic acetals and thioacetals with a gold(I) catalyst: comparison with Brønsted acid catalysts. Tetrahedron, 64(34), 7902-7909. doi:10.1016/j.tet.2008.06.032Hashimoto, T., Kutubi, S., Izumi, T., Rahman, A., & Kitamura, T. (2011). Catalytic hydroarylation of alkynes with arenes in the presence of FeCl3 and AgOTf. Journal of Organometallic Chemistry, 696(1), 99-105. doi:10.1016/j.jorganchem.2010.08.009Corma, A., Ruiz, V. R., Leyva-Pérez, A., & Sabater, M. J. (2010). Regio- and Stereoselective Intermolecular Hydroalkoxylation of Alkynes Catalysed by Cationic Gold(I) Complexes. Advanced Synthesis & Catalysis, 352(10), 1701-1710. doi:10.1002/adsc.201000094Hashmi, A. S. K., & Rudolph, M. (2008). Gold catalysis in total synthesis. Chemical Society Reviews, 37(9), 1766. doi:10.1039/b615629kLeyva-Pérez, A., & Corma, A. (2011). Ähnlichkeiten und Unterschiede innerhalb der «relativistischen» Triade Gold, Platin und Quecksilber in der Katalyse. Angewandte Chemie, 124(3), 636-658. doi:10.1002/ange.201101726Leyva-Pérez, A., & Corma, A. (2011). Similarities and Differences between the «Relativistic» Triad Gold, Platinum, and Mercury in Catalysis. Angewandte Chemie International Edition, 51(3), 614-635. doi:10.1002/anie.20110172

    Nitro functionalized chromium terephthalate metal-organic framework as multifunctional solid acid for the synthesis of benzimidazoles

    Full text link
    [EN] In the present work, nitro functionalized chromium terephthalate [MIL-101(Cr)-NO2] metal-organic framework is prepared and characterized by powder X-ray diffraction (XRD), elemental analysis, infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Brun auer-Emmett-Teller (BET) surface area. The inherent Lewis acidity of MIL-101(Cr)-NO2 is confirmed by FT-IR spectroscopy using CD3CN as a probe molecule. The performance of MIL-101(Cr)-NO2 as bifunctional catalyst (acid and redox) promoting the synthesis of wide range of benzimidazoles has been examined by catalyzed condensation on acid sites and subsequent oxidative dehydrogenation. The catalytic activity of MIL-101(Cr)-NO2 is found to be superior than analogues catalysts like MIL-101(Cr)-S0(3)H, MIL-101(Cr)-NH2, U10-66(Zr), Ui0-66(Zr)-NO2, MIL-100(Fe) and Cu-3(BTC)(2) (BTC: 1,35-benzenetricarboxylate) under identical reaction conditions, The structural stability of MIL-101(Cr)-NO2 is supported by leaching analysis and reusability tests. MIL-101(Cr)-NO2 solid is used five times without decay in its activity. Comparison of the fresh and five times used MIL-101(Cr)-NO2 solids by powder XRD, SEM and elemental analysis indicate identical crystallinity, morphology and the absence of chromium leaching, respectively. (C) 2019 Elsevier Inc. All rights reserved.AD thanks the University Grants Commission, New Delhi, for the award of an Assistant Professorship under its Faculty Recharge Programme. AD also thanks the Department of Science and Technology, India, for the financial support through Extra Mural Research Funding (EMR/2016/006500). Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-098237-CO21) and Generalitat Valenciana (Prometeo 2017/083) is gratefully acknowledged. S.N. thanks financial support by the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudication de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016), Ministerio de Ciencia, Innovation y Universidades RTI2018-099482-A-I00 project and Generalitat Valenciana grupos de investigacion consolidables 2019 (AICO/2019/214) project.Vallés-García, C.; Cabrero-Antonino, M.; Navalón Oltra, S.; Alvaro Rodríguez, MM.; Dhakshinamoorthy, A.; García Gómez, H. (2020). Nitro functionalized chromium terephthalate metal-organic framework as multifunctional solid acid for the synthesis of benzimidazoles. Journal of Colloid and Interface Science. 560:885-893. https://doi.org/10.1016/j.jcis.2019.10.093S885893560Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., & Margiolaki, I. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275Bromberg, L., & Hatton, T. A. (2011). Aldehyde-Alcohol Reactions Catalyzed under Mild Conditions by Chromium(III) Terephthalate Metal Organic Framework (MIL-101) and Phosphotungstic Acid Composites. ACS Applied Materials & Interfaces, 3(12), 4756-4764. doi:10.1021/am201246dCirujano, F. G., Leyva-Pérez, A., Corma, A., & Llabrés i Xamena, F. X. (2013). MOFs as Multifunctional Catalysts: Synthesis of Secondary Arylamines, Quinolines, Pyrroles, and Arylpyrrolidines over Bifunctional MIL-101. ChemCatChem, 5(2), 538-549. doi:10.1002/cctc.201200878Kim, J., Kim, S.-N., Jang, H.-G., Seo, G., & Ahn, W.-S. (2013). CO2 cycloaddition of styrene oxide over MOF catalysts. Applied Catalysis A: General, 453, 175-180. doi:10.1016/j.apcata.2012.12.018Li, B., Leng, K., Zhang, Y., Dynes, J. J., Wang, J., Hu, Y., … Ma, S. (2015). Metal–Organic Framework Based upon the Synergy of a Brønsted Acid Framework and Lewis Acid Centers as a Highly Efficient Heterogeneous Catalyst for Fixed-Bed Reactions. Journal of the American Chemical Society, 137(12), 4243-4248. doi:10.1021/jacs.5b01352Mitchell, L., Gonzalez-Santiago, B., Mowat, J. P. S., Gunn, M. E., Williamson, P., Acerbi, N., … Wright, P. A. (2013). Remarkable Lewis acid catalytic performance of the scandium trimesate metal organic framework MIL-100(Sc) for C–C and CN bond-forming reactions. Catal. Sci. Technol., 3(3), 606-617. doi:10.1039/c2cy20577gBhattacharjee, S., Chen, C., & Ahn, W.-S. (2014). Chromium terephthalate metal–organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. RSC Adv., 4(94), 52500-52525. doi:10.1039/c4ra11259hNiknam, E., Panahi, F., Daneshgar, F., Bahrami, F., & Khalafi-Nezhad, A. (2018). Metal–Organic Framework MIL-101(Cr) as an Efficient Heterogeneous Catalyst for Clean Synthesis of Benzoazoles. ACS Omega, 3(12), 17135-17144. doi:10.1021/acsomega.8b02309Darunte, L. A., Oetomo, A. D., Walton, K. S., Sholl, D. S., & Jones, C. W. (2016). Direct Air Capture of CO2 Using Amine Functionalized MIL-101(Cr). ACS Sustainable Chemistry & Engineering, 4(10), 5761-5768. doi:10.1021/acssuschemeng.6b01692Gao, L., Li, C.-Y. V., Yung, H., & Chan, K.-Y. (2013). A functionalized MIL-101(Cr) metal–organic framework for enhanced hydrogen release from ammonia borane at low temperature. Chemical Communications, 49(90), 10629. doi:10.1039/c3cc45719bHartmann, M., & Fischer, M. (2012). Amino-functionalized basic catalysts with MIL-101 structure. Microporous and Mesoporous Materials, 164, 38-43. doi:10.1016/j.micromeso.2012.06.044Ma, W., Xu, L., Li, Z., Sun, Y., Bai, Y., & Liu, H. (2016). Post-synthetic modification of an amino-functionalized metal–organic framework for highly efficient enrichment of N-linked glycopeptides. Nanoscale, 8(21), 10908-10912. doi:10.1039/c6nr02490dToyao, T., Fujiwaki, M., Horiuchi, Y., & Matsuoka, M. (2013). Application of an amino-functionalised metal–organic framework: an approach to a one-pot acid–base reaction. RSC Advances, 3(44), 21582. doi:10.1039/c3ra44701dYu, H., Xie, J., Zhong, Y., Zhang, F., & Zhu, W. (2012). One-pot synthesis of nitroalkenes via the Henry reaction over amino-functionalized MIL-101 catalysts. Catalysis Communications, 29, 101-104. doi:10.1016/j.catcom.2012.09.032Ma, L., Xu, L., Jiang, H., & Yuan, X. (2019). Comparative research on three types of MIL-101(Cr)-SO3H for esterification of cyclohexene with formic acid. RSC Advances, 9(10), 5692-5700. doi:10.1039/c8ra10366fSaikia, M., & Saikia, L. (2016). Sulfonic acid-functionalized MIL-101(Cr) as a highly efficient heterogeneous catalyst for one-pot synthesis of 2-amino-4H-chromenes in aqueous medium. RSC Advances, 6(19), 15846-15853. doi:10.1039/c5ra28135kZhou, Y.-X., Chen, Y.-Z., Hu, Y., Huang, G., Yu, S.-H., & Jiang, H.-L. (2014). MIL-101-SO3H: A Highly Efficient Brønsted Acid Catalyst for Heterogeneous Alcoholysis of Epoxides under Ambient Conditions. Chemistry - A European Journal, 20(46), 14976-14980. doi:10.1002/chem.201404104Santiago-Portillo, A., Blandez, J. F., Navalón, S., Álvaro, M., & García, H. (2017). Influence of the organic linker substituent on the catalytic activity of MIL-101(Cr) for the oxidative coupling of benzylamines to imines. Catalysis Science & Technology, 7(6), 1351-1362. doi:10.1039/c6cy02577cHerbst, A., Khutia, A., & Janiak, C. (2014). Brønsted Instead of Lewis Acidity in Functionalized MIL-101Cr MOFs for Efficient Heterogeneous (nano-MOF) Catalysis in the Condensation Reaction of Aldehydes with Alcohols. Inorganic Chemistry, 53(14), 7319-7333. doi:10.1021/ic5006456Kumar, A., Maurya, R. A., & Saxena, D. (2009). Diversity-oriented synthesis of benzimidazole, benzoxazole, benzothiazole and quinazolin-4(3H)-one libraries via potassium persulfate–CuSO4-mediated oxidative coupling reactions of aldehydes in aqueous micelles. Molecular Diversity, 14(2), 331-341. doi:10.1007/s11030-009-9170-8Reddy, L. A., Malakondaiah, G. C., Reddy, A. S., Bhaskar, B. V., Himabindu, V., Bhattacharya, A., & Bandichhor, R. (2009). Scalable Process for the Premix of Esomeprazole. Organic Process Research & Development, 13(6), 1122-1124. doi:10.1021/op9001406Zhang, Z.-H., Li, T.-S., & Li, J.-J. (2006). A Highly Effective Sulfamic Acid/Methanol Catalytic System for the Synthesis of Benzimidazole Derivatives at Room Temperature. Monatshefte für Chemie - Chemical Monthly, 138(1), 89-94. doi:10.1007/s00706-006-0566-1Singh, M. P., Sasmal, S., Lu, W., & Chatterjee, M. N. (2000). Synthetic Utility of Catalytic Fe(III)/Fe(II) Redox Cycling Towards Fused Heterocycles: A Facile Access to Substituted Benzimidazole, Bisbenzimidazole and Imidazopyridine Derivatives. Synthesis, 2000(10), 1380-1390. doi:10.1055/s-2000-7111Trivedi, R., De, S. K., & Gibbs, R. A. (2006). A convenient one-pot synthesis of 2-substituted benzimidazoles. Journal of Molecular Catalysis A: Chemical, 245(1-2), 8-11. doi:10.1016/j.molcata.2005.09.025Ohsawa, A., Nagata, K., Itoh, T., & Ishikawa, H. (2003). Synthesis of 2-Substituted Benzimidazoles by Reaction of o-Phenylenediamine with Aldehydes in the Presence of Sc(OTf)3. HETEROCYCLES, 61(1), 93. doi:10.3987/com-03-s47Wang, Y., Ma, H., Li, J., & Wang, J. (2007). Selective Synthesis of 2-Aryl-1-arylmethyl-1H-1,3-benzimidazoles Promoted by Ionic Liquid. HETEROCYCLES, 71(1), 135. doi:10.3987/com-06-10920Gogoi, P., & Konwar, D. (2006). An efficient and one-pot synthesis of imidazolines and benzimidazoles via anaerobic oxidation of carbon–nitrogen bonds in water. Tetrahedron Letters, 47(1), 79-82. doi:10.1016/j.tetlet.2005.10.134Kawashita, Y., Nakamichi, N., Kawabata, H., & Hayashi, M. (2003). Direct and Practical Synthesis of 2-Arylbenzoxazoles Promoted by Activated Carbon. Organic Letters, 5(20), 3713-3715. doi:10.1021/ol035393wDhakshinamoorthy, A., Kanagaraj, K., & Pitchumani, K. (2011). Zn2+-K10-clay (clayzic) as an efficient water-tolerant, solid acid catalyst for the synthesis of benzimidazoles and quinoxalines at room temperature. Tetrahedron Letters, 52(1), 69-73. doi:10.1016/j.tetlet.2010.10.146Madasamy, K., Kumaraguru, S., Sankar, V., Mannathan, S., & Kathiresan, M. (2019). A Zn based metal organic framework as a heterogeneous catalyst for C–C bond formation reactions. New Journal of Chemistry, 43(9), 3793-3800. doi:10.1039/c8nj05953eKaur, H., Venkateswarulu, M., Kumar, S., Krishnan, V., & Koner, R. R. (2018). A metal–organic framework based multifunctional catalytic platform for organic transformation and environmental remediation. Dalton Transactions, 47(5), 1488-1497. doi:10.1039/c7dt04057aHomaee, M., Hamadi, H., Nobakht, V., Javaherian, M., & Salahshournia, B. (2019). Ultrasound-assisted synthesis of UiO-66-NHSO3H via post-synthetic modification as a heterogeneous Brønsted acid catalyst. Polyhedron, 165, 152-161. doi:10.1016/j.poly.2019.03.009Kardanpour, R., Tangestaninejad, S., Mirkhani, V., Moghadam, M., Mohammadpoor-Baltork, I., & Zadehahmadi, F. (2016). Anchoring of Cu(II) onto surface of porous metal-organic framework through post-synthesis modification for the synthesis of benzimidazoles and benzothiazoles. Journal of Solid State Chemistry, 235, 145-153. doi:10.1016/j.jssc.2015.11.019Canivet, J., Vandichel, M., & Farrusseng, D. (2016). Origin of highly active metal–organic framework catalysts: defects? Defects! Dalton Transactions, 45(10), 4090-4099. doi:10.1039/c5dt03522hDhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2015). Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chemical Society Reviews, 44(7), 1922-1947. doi:10.1039/c4cs00254gYuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., … Zhou, H. (2018). Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 30(37), 1704303. doi:10.1002/adma.201704303Dhakshinamoorthy, A., & Garcia, H. (2014). Cascade Reactions Catalyzed by Metal Organic Frameworks. ChemSusChem, 7(9), 2392-2410. doi:10.1002/cssc.201402148Hu, M.-L., Safarifard, V., Doustkhah, E., Rostamnia, S., Morsali, A., Nouruzi, N., … Akhbari, K. (2018). Taking organic reactions over metal-organic frameworks as heterogeneous catalysis. Microporous and Mesoporous Materials, 256, 111-127. doi:10.1016/j.micromeso.2017.07.057Xu, C., Fang, R., Luque, R., Chen, L., & Li, Y. (2019). Functional metal–organic frameworks for catalytic applications. Coordination Chemistry Reviews, 388, 268-292. doi:10.1016/j.ccr.2019.03.005Azarifar, D., Ghorbani-Vaghei, R., Daliran, S., & Oveisi, A. R. (2017). A Multifunctional Zirconium-Based Metal-Organic Framework for the One-Pot Tandem Photooxidative Passerini Three-Component Reaction of Alcohols. ChemCatChem, 9(11), 1992-2000. doi:10.1002/cctc.201700169Ghaleno, M. R., Ghaffari-Moghaddam, M., Khajeh, M., Reza Oveisi, A., & Bohlooli, M. (2019). Iron species supported on a mesoporous zirconium metal-organic framework for visible light driven synthesis of quinazolin-4(3H)-ones through one-pot three-step tandem reaction. Journal of Colloid and Interface Science, 535, 214-226. doi:10.1016/j.jcis.2018.09.099Kirchon, A., Feng, L., Drake, H. F., Joseph, E. A., & Zhou, H.-C. (2018). From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chemical Society Reviews, 47(23), 8611-8638. doi:10.1039/c8cs00688aDhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzyl Amines to Benzyl Imines Catalyzed by Metal-Organic Framework Solids. ChemCatChem, 2(11), 1438-1443. doi:10.1002/cctc.201000175Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Aerobic Oxidation of Styrenes Catalyzed by an Iron Metal Organic Framework. ACS Catalysis, 1(8), 836-840. doi:10.1021/cs200128tDhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metal-Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry - A European Journal, 22(24), 8012-8024. doi:10.1002/chem.201505141Santiago-Portillo, A., Navalón, S., Álvaro, M., & García, H. (2018). Generating and optimizing the catalytic activity in UiO-66 for aerobic oxidation of alkenes by post-synthetic exchange Ti atoms combined with ligand substitution. Journal of Catalysis, 365, 450-463. doi:10.1016/j.jcat.2018.07.032Santiago-Portillo, A., Navalón, S., Cirujano, F. G., Xamena, F. X. L. i, Alvaro, M., & Garcia, H. (2015). MIL-101 as Reusable Solid Catalyst for Autoxidation of Benzylic Hydrocarbons in the Absence of Additional Oxidizing Reagents. ACS Catalysis, 5(6), 3216-3224. doi:10.1021/acscatal.5b00411Santiago-Portillo, A., Navalón, S., Concepción, P., Álvaro, M., & García, H. (2017). Influence of Terephthalic Acid Substituents on the Catalytic Activity of MIL-101(Cr) in Three Lewis Acid Catalyzed Reactions. ChemCatChem, 9(13), 2506-2511. doi:10.1002/cctc.201700236Lammert, M., Bernt, S., Vermoortele, F., De Vos, D. E., & Stock, N. (2013). Single- and Mixed-Linker Cr-MIL-101 Derivatives: A High-Throughput Investigation. Inorganic Chemistry, 52(15), 8521-8528. doi:10.1021/ic4005328Bernt, S., Guillerm, V., Serre, C., & Stock, N. (2011). Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. Chemical Communications, 47(10), 2838. doi:10.1039/c0cc04526hLi, B., Zhang, Y., Ma, D., Li, L., Li, G., Li, G., … Feng, S. (2012). A strategy toward constructing a bifunctionalized MOF catalyst: post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites. Chemical Communications, 48(49), 6151. doi:10.1039/c2cc32384bKandiah, M., Nilsen, M. H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., … Lillerud, K. P. (2010). Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chemistry of Materials, 22(24), 6632-6640. doi:10.1021/cm102601vBansal, Y., & Silakari, O. (2012). The therapeutic journey of benzimidazoles: A review. Bioorganic & Medicinal Chemistry, 20(21), 6208-6236. doi:10.1016/j.bmc.2012.09.013Kumar, D., Kommi, D. N., Chebolu, R., Garg, S. K., Kumar, R., & Chakraborti, A. K. (2013). Selectivity control during the solid supported protic acids catalysed synthesis of 1,2-disubstituted benzimidazoles and mechanistic insight to rationalize selectivity. RSC Adv., 3(1), 91-98. doi:10.1039/c2ra21994hWang, R., Lu, X., Yu, X., Shi, L., & Sun, Y. (2007). Acid-catalyzed solvent-free synthesis of 2-arylbenzimidazoles under microwave irradiation. Journal of Molecular Catalysis A: Chemical, 266(1-2), 198-201. doi:10.1016/j.molcata.2006.04.071Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2015). Deactivation of Cu3(BTC)2 in the Synthesis of 2-Phenylquinoxaline. Catalysis Letters, 145(8), 1600-1605. doi:10.1007/s10562-015-1497-4Chen, J., Li, K., Chen, L., Liu, R., Huang, X., & Ye, D. (2014). Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal–organic frameworks. Green Chem., 16(5), 2490-2499. doi:10.1039/c3gc42414fHerbst, A., & Janiak, C. (2017). MOF catalysts in biomass upgrading towards value-added fine chemicals. CrystEngComm, 19(29), 4092-4117. doi:10.1039/c6ce01782gInamdar, S. M., More, V. K., & Mandal, S. K. (2013). CuO nano-particles supported on silica, a new catalyst for facile synthesis of benzimidazoles, benzothiazoles and benzoxazoles. Tetrahedron Letters, 54(6), 579-583. doi:10.1016/j.tetlet.2012.11.091Soleimani, E., Khodaei, M. M., Yazdani, H., Saei, P., & Zavar Reza, J. (2015). Synthesis of 2-substituted benzimidazoles and benzothiazoles using Ag2CO3/Celite as an efficient solid catalyst. Journal of the Iranian Chemical Society, 12(7), 1281-1285. doi:10.1007/s13738-015-0592-1Bardajee, G. R., Mohammadi, M., Yari, H., & Ghaedi, A. (2016). Simple and efficient protocol for the synthesis of benzoxazole, benzoimidazole and benzothiazole heterocycles using Fe(III)–Schiff base/SBA-15 as a nanocatalyst. Chinese Chemical Letters, 27(2), 265-270. doi:10.1016/j.cclet.2015.10.011Sharghi, H., Asemani, O., & Tabaei, S. M. H. (2008). Simple and mild procedures for synthesis of benzimidazole derivatives using heterogeneous catalyst systems. Journal of Heterocyclic Chemistry, 45(5), 1293-1298. doi:10.1002/jhet.5570450506Adharvana Chari, M., Shobha, D., & Sasaki, T. (2011). Room temperature synthesis of benzimidazole derivatives using reusable cobalt hydroxide (II) and cobalt oxide (II) as efficient solid catalysts. Tetrahedron Letters, 52(43), 5575-5580. doi:10.1016/j.tetlet.2011.08.047Teimouri, A., Chermahini, A. N., Salavati, H., & Ghorbanian, L. (2013). An efficient and one-pot synthesis of benzimidazoles, benzoxazoles, benzothiazoles and quinoxalines catalyzed via nano-solid acid catalysts. Journal of Molecular Catalysis A: Chemical, 373, 38-45. doi:10.1016/j.molcata.2013.02.030Azizian, J., Torabi, P., & Noei, J. (2016). Synthesis of benzimidazoles and benzoxazoles using TiCl3OTf in ethanol at room temperature. Tetrahedron Letters, 57(2), 185-188. doi:10.1016/j.tetlet.2015.11.092Digwal, C. S., Yadav, U., Sakla, A. P., Sri Ramya, P. V., Aaghaz, S., & Kamal, A. (2016). VOSO 4 catalyzed highly efficient synthesis of benzimidazoles, benzothiazoles, and quinoxalines. Tetrahedron Letters, 57(36), 4012-4016. doi:10.1016/j.tetlet.2016.06.074Vimont, A., Thibault-Starzyk, F., & Daturi, M. (2010). Analysing and understanding the active site by IR spectroscopy. Chemical Society Reviews, 39(12), 4928. doi:10.1039/b919543mLeclerc, H., Vimont, A., Lavalley, J.-C., Daturi, M., Wiersum, A. D., Llwellyn, P. L., … Serre, C. (2011). Infrared study of the influence of reducible iron(iii) metal sites on the adsorption of CO, CO2, propane, propene and propyne in the mesoporous metal–organic framework MIL-100. Physical Chemistry Chemical Physics, 13(24), 11748. doi:10.1039/c1cp20502aVimont, A., Goupil, J.-M., Lavalley, J.-C., Daturi, M., Surblé, S., Serre, C., … Audebrand, N. (2006). Investigation of Acid Sites in a Zeotypic Giant Pores Chromium(III) Carboxylate. Journal of the American Chemical Society, 128(10), 3218-3227. doi:10.1021/ja056906sVolkringer, C., Leclerc, H., Lavalley, J.-C., Loiseau, T., Férey, G., Daturi, M., & Vimont, A. (2012). Infrared Spectroscopy Investigation of the Acid Sites in the Metal–Organic Framework Aluminum Trimesate MIL-100(Al). The Journal of Physical Chemistry C, 116(9), 5710-5719. doi:10.1021/jp210671
    corecore