27 research outputs found

    Islet Transplantation a Technical Challenge : Studies on Human Pancreas Preservation and Enzymatic Digestion

    No full text
    Islet transplantation has found its niche in diabetes treatment. It has contributed to a better quality of life and better glycemic control of patients with diabetes suffering from severe hypoglycemia that are not eligible for vascularized pancreas transplantation. Islet isolation is a technically challenging procedure. The different studies within this doctoral thesis aim to improve and standardize different steps in the isolation procedure. They are in particular looking to improve human pancreas preservation during cold storage, to optimize islet release from the exocrine tissue and to assess whether the isolated islet yield can be predicted from a biopsy. We found that pancreas preservation with pre-oxygenated perfluorodecalin (two-layer method) did not improve the ischemic tolerance of the human pancreas as compared to cold storage with the University of Wisconsin (UW) solution. Furthermore, in pancreas with long cold ischemia time (CIT) (>10 hours), Histidine-Tryptophan-Ketoglutarate (HTK) had a limited preservation capacity as compared with the UW solution with respect to isolation outcome. We also found that during enzymatic pancreas digestion, Vitacyte HA was able to provide a similar islet yield and quality as Serva NB1 with less collagenase activity and shorter digestion time. We further describe the first experience with a new GMP manufactured enzyme called Liberase MTF-S for successful human islet isolation. Finally, we found that the isolated islet yield could not be predicted from a biopsy taken from the head of the pancreas concerning solely morphological parameters of the islets tissue. The improvement of pancreas preservation will allow for marginal organs with prolonged cold ischemia time to expand the donor pool. Better knowledge of how the pancreatic extracellular matrix is digested by collagenase will lead to a fast and predictable islet release from the exocrine tissue. By standardizing the isolation procedure and improving organ selection we will increase the success rate in human islet isolation, thereby making islet transplantation available for more patients

    Islet Transplantation a Technical Challenge : Studies on Human Pancreas Preservation and Enzymatic Digestion

    No full text
    Islet transplantation has found its niche in diabetes treatment. It has contributed to a better quality of life and better glycemic control of patients with diabetes suffering from severe hypoglycemia that are not eligible for vascularized pancreas transplantation. Islet isolation is a technically challenging procedure. The different studies within this doctoral thesis aim to improve and standardize different steps in the isolation procedure. They are in particular looking to improve human pancreas preservation during cold storage, to optimize islet release from the exocrine tissue and to assess whether the isolated islet yield can be predicted from a biopsy. We found that pancreas preservation with pre-oxygenated perfluorodecalin (two-layer method) did not improve the ischemic tolerance of the human pancreas as compared to cold storage with the University of Wisconsin (UW) solution. Furthermore, in pancreas with long cold ischemia time (CIT) (>10 hours), Histidine-Tryptophan-Ketoglutarate (HTK) had a limited preservation capacity as compared with the UW solution with respect to isolation outcome. We also found that during enzymatic pancreas digestion, Vitacyte HA was able to provide a similar islet yield and quality as Serva NB1 with less collagenase activity and shorter digestion time. We further describe the first experience with a new GMP manufactured enzyme called Liberase MTF-S for successful human islet isolation. Finally, we found that the isolated islet yield could not be predicted from a biopsy taken from the head of the pancreas concerning solely morphological parameters of the islets tissue. The improvement of pancreas preservation will allow for marginal organs with prolonged cold ischemia time to expand the donor pool. Better knowledge of how the pancreatic extracellular matrix is digested by collagenase will lead to a fast and predictable islet release from the exocrine tissue. By standardizing the isolation procedure and improving organ selection we will increase the success rate in human islet isolation, thereby making islet transplantation available for more patients

    Whole-body MRI including diffusion-weighted MRI compared with 5-HTP PET/CT in the detection of neuroendocrine tumors

    No full text
    Aim: We wanted to explore if whole-body magnetic resonance imaging (MRI) including diffusion-weighted (DW) and liver-specific contrast agent-enhanced imaging could be valuable in lesion detection of neuroendocrine tumors (NET). [11C]-5-Hydroxytryptophan positron emission tomography/computed tomography (5-HTP PET/CT) was used for comparison. Materials and methods: Twenty-one patients with NET were investigated with whole-body MRI, including DW imaging (DWI) and contrast-enhanced imaging of the liver, and whole-body 5-HTP PET/CT. Seven additional patients underwent upper abdomen MRI including DWI, liver-specific contrast agent-enhanced imaging, and 5-HTP PET/CT. Results: There was a patient-based concordance of 61% and a lesion-based concordance of 53% between the modalities. MRI showed good concordance with PET in detecting bone metastases but was less sensitive in detecting metastases in mediastinal lymph nodes. MRI detected more liver metastases than 5-HTP PET/CT. Conclusion: Whole-body MRI with DWI did not detect all NET lesions found with whole-body 5-HTP PET/CT. Our findings indicate that MRI of the liver including liver-specific contrast agent-enhanced imaging and DWI could be a useful complement to whole-body 5-HTP PET/CT

    GABA induces a hormonal counter-regulatory response in subjects with long-standing type 1 diabetes

    No full text
    Introduction: Experimentally, gamma-aminobutyric acid (GABA) has been found to exert immune-modulatory effects and induce beta-cell regeneration, which make it a highly interesting substance candidate for the treatment of type 1 diabetes (T1D). In many countries, including those in the European Union, GABA is considered a pharmaceutical drug. We have therefore conducted a safety and dose escalation trial with the first controlled-release formulation of GABA, Remygen (Diamyd Medical). Research design and methods: Six adult male subjects with long-standing T1D (age 24.8 +/- 1.5 years, disease duration 14.7 +/- 2.2 years) were enrolled in an 11-day dose escalation trial with a controlled-release formulation of GABA, Remygen. Pharmacokinetics, glucose control and hormonal counter-regulatory response during hypoglycemic clamps were evaluated at every dose increase (200 mg, 600 mg and 1200 mg). Results: During the trial there were no serious and only a few, transient, adverse events reported. Without treatment, the counter-regulatory hormone response to hypoglycemia was severely blunted. Intake of 600 mg GABA more than doubled the glucagon, epinephrine, growth hormone and cortisol responses to hypoglycemia. Conclusions: We find that the GABA treatment was well tolerated and established a counter-regulatory response to hypoglycemia in long-standing T1D. Further studies regarding not only the clinical potential of Remygen for beta-cell regeneration but also its potential use as hypoglycemic prophylaxis are warranted. Trail registration number and EudraCT2018-001115-73

    Pregnancy induces pancreatic insulin secretion in women with long-standing type 1 diabetes

    No full text
    Introduction: Pregnancy entails both pancreatic adaptations with increasing beta-cell mass and immunological alterations in healthy women. In this study, we have examined the effects of pregnancy on beta-cell function and immunological processes in long-standing type 1 diabetes (L-T1D). Research design and methods: Fasting and stimulated C-peptide were measured after an oral glucose tolerance test in pregnant women with L-T1D (n=17) during the first trimester, third trimester, and 5-8 weeks post partum. Two 92-plex Olink panels were used to measure proteins in plasma. Non-pregnant women with L-T1D (n=30) were included for comparison. Results: Fasting C-peptide was detected to a higher degree in women with L-T1D during gestation and after parturition (first trimester: 64.7%, third trimester: 76.5%, and post partum: 64.7% vs 26.7% in non-pregnant women). Also, total insulin secretion and peak C-peptide increased during pregnancy. The plasma protein levels in pregnant women with L-T1D was dynamic, but few analytes were functionally related. Specifically, peripheral levels of prolactin (PRL), prokineticin (PROK)-1, and glucagon (GCG) were elevated during gestation whereas levels of proteins related to leukocyte migration (CCL11), T cell activation (CD28), and antigen presentation (such as CD83) were reduced. Conclusions: In summary, we have found that some C-peptide secretion, that is, an indirect measurement of endogenous insulin production, is regained in women with L-T1D during pregnancy, which might be attributed to elevated peripheral levels of PRL, PROK-1, or GCG

    Using HTK for prolonged pancreas preservation prior to human islet isolation.

    No full text
    BACKGROUND: Histidine-tryptophan-ketoglutarate (HTK) has been established as an alternative to University-of-Wisconsin solution (UWS) for abdominal organ preservation, but data about HTK efficiency to preserve pancreata during prolonged cold ischemia time (CIT) are conflicting. In human islet transplantation, HTK provided similar isolation outcomes after short CIT. The present study aimed to investigate whether islets can be successfully isolated from HTK-preserved pancreata after prolonged CIT compared with UWS. MATERIALS AND METHODS: Sixty-four human pancreata retrieved from donors meeting criteria for kidney donation were perfused utilizing either HTK or UWS and preserved for more or less than 10 h prior to islet isolation. Along with parameters related to isolation and islet quality assessment, the dry-to-wet weight ratio was evaluated. RESULTS: Donor- and procurement-related factors did not vary between HTK- and UWS-perfused pancreata. The dry-to-wet weight ratio was lower in HTK-preserved pancreata indicated tissue edema (21.0% ± 3.5% versus 24.8% ± 2.0%, P = 0.007). Isolation-related variables differed between experimental groups after prolonged CIT with respect to purified packed tissue volume (9.1 ± 5.0 versus 17.2 ± 8.1 μL/g, P = 0.004) and islet yield (1910 ± 980 versus 3150 ± 1420 IE/g, P = 0.012). Islet purity and survival after culture were similar after HTK or UWS perfusion. The preservation solution did not affect in vitro function and transplantability of isolated islets. CONCLUSIONS: Compared with UWS, HTK has similar efficiency to preserve human pancreata for subsequent islet isolation during <10 h CIT but seems to be limited for prolonged cold storage
    corecore