783 research outputs found

    Ranking Alternatives on the Basis of the Intensity of Dominance and Fuzzy Logic within MAUT

    Get PDF
    We introduce dominance measuring methods to derive a ranking of alternatives to deal with incomplete information in multi-criteria decision making problems on the basis of Multi-Attribute Utility Theory (MAUT). We consider the situation where the alternative performances are represented by uniformly distributed intervals, and there exists imprecision concerning the decision-makersÂż preferences, by means of classes of individual utility functions and imprecise weights represented by weight intervals or fuzzy weights, respectively. An additive multi-attribute utility model is used to evaluate the alternatives under consideration, which is considered a valid approach in most practical cases. The approaches we propose are based on the dominance values between pairs of alternatives that can be computed by linear programming, which are then transformed into dominance intensities from which a dominance intensity measure is derived. The methods proposed are compared with other existing dominance measuring methods and other methodologies by Monte Carlo simulation techniques. The performance is analyzed in terms of two measures of efficacy: hit ratio, the proportion of all cases in which the method selects the same best alternative as in the TRUE ranking, and the Rank-order correlation, which represents how similar the overall rank structures of alternatives are in the TRUE ranking and in the ranking derived from the method. The approaches are illustrated with an example consisting on the selection of intervention strategies to restore an aquatic ecosystem contaminated by radionuclides

    Estado y GlobalizaciĂłn

    Get PDF
    Fil: MartĂ­nez Caballero, Alfonso. Universidad Nacional de Cuyo. Facultad de Ciencias PolĂ­ticas y Sociale

    Dominance Measuring Method Performance under Incomplete Information about Weights.

    Get PDF
    In multi-attribute utility theory, it is often not easy to elicit precise values for the scaling weights representing the relative importance of criteria. A very widespread approach is to gather incomplete information. A recent approach for dealing with such situations is to use information about each alternative?s intensity of dominance, known as dominance measuring methods. Different dominancemeasuring methods have been proposed, and simulation studies have been carried out to compare these methods with each other and with other approaches but only when ordinal information about weights is available. In this paper, we useMonte Carlo simulation techniques to analyse the performance of and adapt such methods to deal with weight intervals, weights fitting independent normal probability distributions orweights represented by fuzzy numbers.Moreover, dominance measuringmethod performance is also compared with a widely used methodology dealing with incomplete information on weights, the stochastic multicriteria acceptability analysis (SMAA). SMAA is based on exploring the weight space to describe the evaluations that would make each alternative the preferred one

    Dominance Measuring Approach using Stochastic Weights

    Full text link
    In this paper we propose an approach to obtain a ranking of alternatives in multicriteria decision-making problems when there is imprecision concerning the alternative performances, component utility functions and weights. We assume decision maker's preferences are represented by an additive multi-attribute utility function, in which weights are modeled by independent normal variables, the performance in each attribute for each alternative is an interval value and classes of utility functions are available for each attribute. The approach we propose is based on dominance measures, which are computed in a similar way that when the imprecision concerning weights is modeled by uniform distributions or by an ordinal relation. In this paper we will show how the approach can be applied when the imprecision concerning weights are represented by normal distributions. Extensions to other distributions, such as truncated normal or beta, can be feasible using Monte Carlo simulation techniques

    Ranking Alternatives on the Basis of a Dominance Intensity Measure

    Get PDF
    The additive multi-attribute utility model is widely used within MultiAttribute Utility Theory (MAUT), demanding all the information describing the decision-making situation. However, these information requirements can obviously be far too strict in many practical situations. Consequently, incomplete information about input parameters has been incorporated into the decisionmaking process. We propose an approach based on a dominance intensity measure to deal with such situations. The approach is based on the dominance values between pairs of alternatives that can be computed by linear programming. These dominance values are transformed into dominance intensities from which a dominance intensity measure is derived. It is used to analyze the robustness of a ranking of technologies for the disposition of surplus weapons-grade plutonium by the Department of Energy in the USA, and compared with other dominance measuring methods

    An Entropy Approach to Multiple Sclerosis Identification

    Get PDF
    Multiple sclerosis (MS) is a relatively common neurodegenerative illness that frequently causes a large level of disability in patients. While its cause is not fully understood, it is likely due to a combination of genetic and environmental factors. Diagnosis of multiple sclerosis through a simple clinical examination might be challenging as the evolution of the illness varies significantly from patient to patient, with some patients experiencing long periods of remission. In this regard, having a quick and inexpensive tool to help identify the illness, such as DNA CpG (cytosine-phosphate-guanine) methylation, might be useful. In this paper, a technique is presented, based on the concept of Shannon Entropy, to select CpGs as inputs for non-linear classification algorithms. It will be shown that this approach generates accurate classifications that are a statistically significant improvement over using all the data available or randomly selecting the same number of CpGs. The analysis controlled for factors such as age, gender and smoking status of the patient. This approach managed to reduce the number of CpGs used while at the same time significantly increasing the accuracy

    Alzheimer Identification through DNA Methylation and Artificial Intelligence Techniques

    Get PDF
    A nonlinear approach to identifying combinations of CpGs DNA methylation data, as biomarkers for Alzheimer (AD) disease, is presented in this paper. It will be shown that the presented algorithm can substantially reduce the amount of CpGs used while generating forecasts that are more accurate than using all the CpGs available. It is assumed that the process, in principle, can be non-linear; hence, a non-linear approach might be more appropriate. The proposed algorithm selects which CpGs to use as input data in a classification problem that tries to distinguish between patients suffering from AD and healthy control individuals. This type of classification problem is suitable for techniques, such as support vector machines. The algorithm was used both at a single dataset level, as well as using multiple datasets. Developing robust algorithms for multi-datasets is challenging, due to the impact that small differences in laboratory procedures have in the obtained data. The approach that was followed in the paper can be expanded to multiple datasets, allowing for a gradual more granular understanding of the underlying process. A 92% successful classification rate was obtained, using the proposed method, which is a higher value than the result obtained using all the CpGs available. This is likely due to the reduction in the dimensionality of the data obtained by the algorithm that, in turn, helps to reduce the risk of reaching a local minima

    Neural Network Aided Detection of Huntington Disease

    Get PDF
    Huntington Disease (HD) is a degenerative neurological disease that causes a significant impact on the quality of life of the patient and eventually death. In this paper we present an approach to create a biomarker using as an input DNA CpG methylation data to identify HD patients. DNA CpG methylation is a well-known epigenetic marker for disease state. Technological advances have made it possible to quickly analyze hundreds of thousands of CpGs. This large amount of information might introduce noise as potentially not all DNA CpG methylation levels will be related to the presence of the illness. In this paper, we were able to reduce the number of CpGs considered from hundreds of thousands to 237 using a non-linear approach. It will be shown that using only these 237 CpGs and non-linear techniques such as artificial neural networks makes it possible to accurately differentiate between control and HD patients. An underlying assumption in this paper is that there are no indications suggesting that the process is linear and therefore non-linear techniques, such as artificial neural networks, are a valid tool to analyze this complex disease. The proposed approach is able to accurately distinguish between control and HD patients using DNA CpG methylation data as an input and non-linear forecasting techniques. It should be noted that the dataset analyzed is relatively small. However, the results seem relatively consistent and the analysis can be repeated with larger data-sets as they become available
    • …
    corecore