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Abstract . We introduce a dominance measuring method to derive a ranking of al­

ternatives to deal with incomplete information in multi-criteria decision-making problems 

on the basis of multi-attribute utility theory (MAUT) and fuzzy sets theory. We consider 

the situation where the alternative performances are represented by intervals and there 

exists imprecision concerning the decision-makers' preferences, leading to classes of com­

ponent utility functions and trapezoidal fuzzy weights. An additive multi-attribute utility 

model is used to evaluate the alternatives under consideration. The approach we propose 

is based on the dominance values between pairs of alternatives that can be computed by 

linear programming. These values are then transformed into dominance intensities from 

which a dominance intensity measure is derived. The performance of the proposed method 

is analyzed using MonteCarlo simulation techniques. 

Keywords: Decision Analysis, Fuzzy Sets, Environmental Studies. 

I N T R O D U C T I O N 

The additive model is considered a valid approximation in most real decision­

making problems (Raiffa, 1982; Stewart, 1996). The functional form of the additive 

model is 
n 
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where x^ is the performance in the attribute Xj of alternative Ai; the utility 

associated with value x^, and Wj are the weights of each attribute, representing their 

relative importance in decision-making. 

Most complex decision-making problems involve imprecise information. For ex­

ample, it is impossible to predict the exact performance of each alternative under 

consideration, being derived from statistical methods. At the same time, it is often 

not easy to elicit precise weights, which are represented by intervals. DMs may 

find it difficult to compare criteria or not want to reveal their preferences in public. 

Furthermore, the decision may be taken within a group, where the imprecision of 

the preferences is the result of a negotiation process. 

A lot of work on MAUT has dealt with incomplete information. Sarabando 

and Dias (2009) give a brief overview of approaches proposed by different authors 

within the MAUT and MAVT (multi-attribute value theory) framework to deal with 

incomplete information. 

Eum et al (2001) provided linear programming characterizations of dominance 

and potential optimality for decision alternatives when information about perfor­

mances and/or weights is incomplete, extended the approach to hierarchical struc­

tures (Lee et al, 2002), and developed the concepts of weak and strong potential 

optimality (Park, 2004). More recently, Mateos and Jimenez (2009) and Mateos et 

al (2009) considered the more general case where imprecision, described by means of 

fixed bounds, appears in alternative performances, as well as in weights and utilities. 

At the same time, a number of studies have been conducted concerning impre­

cision using fuzzy sets theory. These studies feed off the advances of research into 

arithmetic and logical operators of fuzzy numbers, like Tran and Duckstein's study 

proposing the comparison of fuzzy numbers by a fuzzy measure of distance (Tran 

and Duckstein, 2002). 

Following this research line, we consider a decision-making problem with m al-



ternatives, Ai,i = 1,... ,m, and n attributes, Xj,j = 1 , . . . ,n, where incomplete 

information about input parameters has been incorporated into the decision-making 

process: 

• Alternative performances are described under uncertainty [x^, xfA, i = 1 , . . . , m, 

j = 1 , . . . , n, where xf, and xf, are the lower and the upper performances of 

the attribute Xj for the alternative Ai, respectively. 

• Component utilities are described by functions «(• ) , which belong to classes 

of functions of utility [UJ(»), uj (•)], j = 1 , . . . , n, where Uj(») and uj (•) are 

the lower and the upper utility functions of the attribute Xj. 

• Imprecise weights are represented by trapezoidal fuzzy numbers Wj, j = 1 , . . . , n. 

One possibility described in the literature for dealing with imprecision attempts 

to eliminate inferior alternatives based on the concept of pairwise dominance. Given 

two alternatives Ak and Ai, the alternative Ak dominates Ai if Dki > 0, Dki being 

the optimum value of the optimization problem: 

n n 

DM = min {u{Ak) - u{Ai)} = J ] WjUj(xkj) - J ] WjUj{xij) 

xkj — Xkj S xkj i 3 = J- j • • • j n 

s.t. 

xfj < xtj <xfp j = l,...,n 

Uj(xkj) < Uj(xkj) < uf(xkj),j = l,...,n 

uLAxi3) < Uj{xij) < uuAxi3),j = 1 , . . . ,n . 

The objective function in the above optimization problem can also be represented 
n 

by Dki = m i n Yl Wj [uj(xkj) — Uj(xij)]. Therefore, its resolution is equivalent to 
3=1 

solving (Mateos et al, 2007) 
n 

Dki = ^jWjZ*klj, (1) 

3=1 



where z*kl • is the optimum value of the following optimization problem 

mm zklj = Uj (xkj) - Uj {xLj, 

s.t. 
(2) 

xkj — Xkj S xkj i 3 — J-i • • • i n 

xfj < xij < zg, j = l,...,n 

Uj(xkj) < Uj(xkj) < v%(xkj),j = 1 , . . . ,n 

Uj(xij) < Uj{xij) < uu-{xi3),3 = 1 , . . . ,n . 

The optimal solution of problem (2) can be determined in a very simple way 

for certain types of utility functions (Mateos et al, 2007). If the utility function 

is monotonically increasing or decreasing, then z^- = u^{xh) — uH(x^,) or z*k 

u1(xki) ~ uf(xii)-> respectively. 

'klj ~ uj K^kj) uj K-^ljJ ^L ^klj 

A recent approach is to use information about each alternative's intensity of 

dominance, known as dominance measuring methods. Ahn and Park (2008) compute 

both dominating and dominated measures, from which they derive a net dominance. 

This is used as a measure of the strength of preference in the sense that a greater 

net value is better. 

In the next section we introduce a dominance measuring method accounting for 

fuzzy weights. Section 3 analyzes the performance of the proposed method using 

MonteCarlo simulation techniques. Finally, some conclusions are provided in Section 

4. 

M E A S U R E M E N T M E T H O D F O R F U Z Z Y D O M I N A N C E 

The proposed dominance measuring method adapts the proposal by Mateos and 

Jimenez (2009) and Mateos et al (2009) to account for fuzzy weights making use 

of work by Tran and Duckstein (2002) on distances between fuzzy numbers based 

on the generalization of the left and right fuzzy numbers (GLRFN) (Dubois and 

Prade, 1980; Bardossy and Duckstein, 1995). 



A fuzzy set a = (a1; a^ 03,04) is called GLRFN when its membership function 

is defined as 

f^(x) = < 

L 

R 

0 

0,2 — X 

Obi — (l\ 

X — (I3 

G>4 — Cl3 

if d\ < x < a<i 

if a<i<x < a3 

if 03 < x < 0,4 

otherwise, 

where L and R are strictly decreasing functions defined in [0,1] and satisfying the 

conditions: 

L(x) = R(x) = 1 if x < 0 

L(x) = R(x) = 0 if x > 0. 

For a<i = 03, you have Dubois and Prade classic definition of right and left 

fuzzy numbers (Dubois and Prade, 1980). The trapezoidal fuzzy numbers are a 

special case of GLRFN with L(x) = R(x) = 1 — x. A GLRFN is denoted as 

a = (ai, <22, 03, a-iJLa-Ra a n d a ct-cut of a is defined as 

a(a) = (aL(a),aR(a)) = (a2 - (a2 - a1)a3L^1(a),a3 - (a4 - a3)a3R^1(a),). 

(Tran and Duckstein, 2002) define the distance between two GLFRN fuzzy num­

bers a and bas 

D2(a,b,f) 
aL(a)+aR(a) _ bL(a)+bR(a) 

2 2 
2 / a L (a )+a f l (a ) 

I 2 6L(a)+6 f l(a) 
2 

x f(a)(da) > / / f(a)(da 

The function / ( a ) , which serves as a function of weights, is positive continuous 

in [0,1], the distance being computed as a weighted sum of distances between two 

intervals along all of the a-cuts from 0 to 1. The presence of function / permits 

the DM to participate in a flexible way. For example, when the DM is risk-neutral, 

f{a) = a seems to be reasonable. A risk-averse DM might want to put more weight 

on information at a higher a level by using other functions, such as f{a) = a2 or a 

higher power of a. A constant ( / ( a ) = 1), or even a decreasing function / , can be 

utilized for a risk-prone DM. 



For the particular case of the distance of a trapezoidal fuzzy number a = 

(ai, a2, a3, a4) to a constant (specifically 0), we have: 

1. I f / ( a ) = a t h e n d ( a , 0 ) 2 = f 2 3 J + - f 2 J [(a4 - a3) - (a2 - ai)] + 

2 1 03 — G>2 \ 1 / Q>3 — G>2 \ r / s / s-| J- r/ \2 / \ 2 l 
3 ( g J + 9 I 2 J K a 4 - a 3 ) + ( a 2 - a i ) J + — |>4 - as) + («2 - «i) J-

— [(a2 - ai) (a4 - a3)] . 
l o 

2. I f / ( a ) = 1 then d(a, 0)2 = ( ^ ^ ) +\ (^±^-\ [(a4 - a3) - (a2 - ffll)] + 

[(a4 - a3) + (a2 - «i)] + - [(«4 - «3)2 + («2 - «i)2] • 
1 fa3 - a 2 \ 1 / a 3 - a 2 \ , , ^ 1 r, N2 , , ^ 

- [(a2 - ai) (a4 - a 3 ) ] . 
y 

As trapezoidal fuzzy numbers are used to represent weights, the objective func­

tion in (1) can be now represented by 

n n 

DM = dkl =^2 ™jzkij = ^2(wji>wji> wj3, wjdzlij = (dkii,dm, dkl3, dm). 
3=1 3=1 

The first step in the proposed method, then, consists of computing the above 

trapezoidal fuzzy numbers. Consequently, the strength of dominance of alternative 

Ak can be defined as 

n n n n 

dk = (dki, dk2, dk3, dkA) = 2_^ DM = 2_^ ^MI , 2_^ dMi, /_^ ^kl3•> /_^ ^MA 
\=} \ 1=1 1=1 1=1 1=1 , 
l^k \l^k l^k l^k l^k ) 

Next, a dominance intensity, DIk, for each alternative Ak is computed as the 

proportion of the positive part of the fuzzy number dk by the distance of the fuzzy 

number to zero. Specifically, the dominance intensity for alternative Ak is computed 

according to the location of dk as follows: 

1. If dk is completely located at the left of zero, then DIk is minus the distance 

of dk to zero, because there is no positive part in dk. 



2. If 4 is completely located at the right of zero, then DIk is the distance of 4 

to zero, because there is no negative part existing in 4-

3. If 4 includes the zero in its base, then the fuzzy number will have a part on 

the right of zero that we denote d^ and another part on the left of zero that 

we denote d\. DIk is the proportion that represents d^ with respect to 4 by 

the distance of 4 to zero less the proportion that represents d\ with respect 

to 4 by the distance of 4 to zero. 

Next, we analyze each one of these cases in more detail. 

• If 44 < 0, see Figure la), then the dominance intensity of alternative Ak is 

defined as DIk = — < (̂4, 0, / ) . 

- Figure 1 -

• If 4 i > 0, see Figure lb), then the dominance intensity of alternative Ak is 

defined as DIk = d(dk, 0, / ) . 

• If 4 i < 0 and dki > 0, see Figure lc), the corresponding trapezoidal fuzzy 

number is divided by the vertical axis (at zero) into two parts. The left part 

d\ represents the proportion 

—4i 
-d fci 

42 — 4 l 2 
2 (dkl) 

44 + 43 - 42 - 4 i (44 + 43 - 42 - 4i) (42 - 4 i ) ' 
2 

whereas the right part d^ represents the proportion 

dkA + dk3 — dk2 — dk\ (—4i)(—4i) 

2 2(42 -
44 + 43 — 42 — 4 i 

2 
dk2{ — dk2 + 43 + 44) -

- 4 i ) 

- 4 i (43 + 44) 

(42 — 4i) (44 + 43 — 42 — d klj 



The dominance intensity of alternative Ak is defined as 

n r dk2(—dk2 + dk3 + dkA) — dki(dk3 + dk4:) u j f. U1k= — 7 1 , x / , — — , ~, -;—,—44, U,/J 
\Ct-k2 — Ctkl) \akA + «fc3 — «fc2 _ Ctkl) 

-JT^Ti }dkl)] M, T~A^ °> /)• 
[flkA + «fc3 — «fc2 — Ctkl) \ak2 ~ Ctkl) 

If 4 3 < 0 and 4 4 > 0, Figure Id) , the corresponding trapezoidal fuzzy number 

is again divided by the vertical axis into two parts, d\ and d^, represented by 

the proportions 

, 4 4 
dkA 

dkA 

+ dk3 — dk2 -

2 
dkA + dk3 

dkA {dkA -

{dkA 

dkA 

dkA — dk3 

2 

- dki 

— dk2 

2 
- dk2 — 

+ 43" 

u>kA , 
Cl-kA 

2 
— dki 

dki) ~ 

- dk2 — 

— dk3 

dk3 {dk3 — 

dki) {dkA ~ 

{dkA)' 

dk2 — 

- dk3) 

i 

dki) 
, 

and 

dkA + 4)3 - dk2 - dki {dkA - dk3) {dkA + dk3 - dk2 - 4 i ) ' 
2 

respectively, and the dominance intensity of alternative Ak is 

Dh= J7l rl Mrl{dkfrl 7, ^A^Af) 
[dkA — Clk3) [Ct-kA + «fc3 — «fc2 _ Ctkl) 

dkA {dkA — dk2 — dki) — dk3 {dk3 — dk2 — 4 i ) , / T n f\ 
—a{ak,(J,j). {dkA + dk3 — dk2 — dki) {dkA — d k3 

If dk2 < 0 and 4 3 > 0, see Figure le) , dj^ and d^ are 

dkA — dk3 -, 

2 + dk3 dkA + 4 3 
dkA + 4 3 — 4 2 — 4 i dkA + 4 3 — 4 2 — 4 l 

2 

and 
4 2 — 4 i 

dk2 -4 2 - 4i 
dkA + 4 3 — 4 2 — 4 i dkA + 4 3 — 4 2 — 4 l ' 

2 
respectively, and the dominance intensity of alternative Ak is 

P>T ~42 - 4l ,/T n r\ 44 + 43 ,/T n r\ DIk = 1—77i 1 1—44, 0, /) - - — — —44, 0, /). 
akA T ak3 — ak2 — akl akA T «fc3 _ ak2 ~ akl 
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Once the dominance intensity, DIk, has been computed for each alternative Ak, 

the alternatives are ranked, where the best (rank 1) is the alternative with greatest 

DIk and the worst is the alternative with the least DIk-

P E R F O R M A N C E A N A L Y S I S B A S E D O N M O N T E C A R L O SIMU­

LATION T E C H N I Q U E S 

We carried out a simulation study of the above method to analyze its perfor­

mance. Four different levels of alternatives (m = 3, 5, 7,10) and five different levels 

of attributes (n = 3, 5, 7,10,15) were considered in order to validate the results. 

Also, 5000 trials were run for each of the 20 design elements. 

We used two measures of efficacy, hit ratio and rank-order correlation (Ahn and 

Park, 2008; Mateos et al, 2009). The hit ratio is the proportion of all cases in which 

the method selects the same best alternative as in the TRUE ranking. Rank-order 

correlation represents how similar the overall structures ranking alternatives are in 

the TRUE ranking and in the ranking derived from the method. It is calculated 

using Kendall's r (Winkler and Hays, 1985): r = 1 — 2 x (number of pairwise 

preference violations)/(total number of pair preferences). 

First, component utilities for each alternative in each attribute from a uniform 

distribution in (0,1) are randomly generated, leading to an m x n matrix. The 

columns in this matrix are normalized to make the smallest value 0 and the largest 

1, and dominated alternatives are removed. Next, attribute weights representing 

their relative importance are generated. Note that these weights are the TRUE 

weights and the derived ranking of alternatives will be denoted as the TRUE ranking. 

Those weights are then transformed into triangular fuzzy numbers applying a 5% 

deviation from the original weight. Finally, the ranking of alternatives is computed 

and compared with the TRUE ranking. Table 1 exhibits the measures of efficacy for 

each of the 20 design elements for the cases of a risk-prone and a risk-neutral DM. 



- Table 1 -

We can conclude that the hit ratio and the correlation coefficient are very similar 

for the cases of a risk-prone and a risk-neutral DM; the hit ratio is greater than 78% 

for all the design elements, whereas Kendall's r is greater than 86%. Both are 

increasing against the number of attributes. Whereas the hit ratio decreases when 

the number of alternatives is increased, Kendall's r increases. 

C O N C L U S I O N S 

Dominance measuring methods are becoming widely used in a decision-making 

context with incomplete information and have been proved to outperform other 

approaches, like most surrogate weighting methods or the modification of classical 

decision rules to encompass an imprecise decision context. 

In this paper a new dominance measuring method has been proposed, in which 

weights representing the relative importance of decision-making criteria are de­

scribed by fuzzy numbers. The method is based on the distance of a fuzzy number 

to a constant, where the generalization of the left and right fuzzy numbers, GLRFN, 

is used. 

The application of Monte Carlo simulation techniques has demonstrated that 

the proposed method performs well in terms of two measures of efficacy: hit ratio 

and rank-order correlation. 
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Table 1 

Alternatives 
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10 
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Attributes 

3 

5 

7 

10 

15 

3 

5 

7 

10 

15 

3 

5 

7 

10 

15 

3 

5 

7 

10 

15 

Hit ratio 

risk-prone 

90.78 

91.42 

91.02 

90.9 

89.78 

85.02 

85.8 

85.16 

83.64 

83.74 

84.4 

83.72 

83.48 

82.98 

81.14 

85.22 

83.08 

82.28 

82.74 

78.36 

risk-neutral 

90.72 

91.34 

91 

90.96 

89.78 

84.98 

85.8 

85.12 

83.66 

83.66 

84.38 

83.66 

83.34 

82.94 

81.16 

85.08 

82.96 

82.18 

82.66 

78.54 

Kendall's r 

risk-prone 

88.90 

88.77 

87.97 

87.08 

86.24 

89.8 

89.60 

89.29 

88.11 

86.72 

92.16 

91.48 

91.07 

90.21 

88.66 

93.89 

93.51 

93.01 

92.08 

90.41 

risk-neutral 

88.85 

88.66 

87.97 

87.15 

86.27 

89.79 

89.59 

89.28 

88.18 

86.70 

92.15 

91.47 

91.04 

90.26 

88.67 

93.87 

93.49 

93.01 

92.12 

90.45 
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Figure 1: Computing dominance intensities 

Table 1. Measures of efficacy 


