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Abstract. The additive multi-attribute utility model is widely used within Multi-
Attribute Utility Theory (MAUT), demanding all the information describing the 
decision-making situation. However, these information requirements can 
obviously be far too strict in many practical situations. Consequently, incomplete 
information about input parameters has been incorporated into the decision-
making process. We propose an approach based on a dominance intensity measure 
to deal with such situations. The approach is based on the dominance values 
between pairs of alternatives that can be computed by linear programming. These 
dominance values are transformed into dominance intensities from which a 
dominance intensity measure is derived. It is used to analyze the robustness of a 
ranking of technologies for the disposition of surplus weapons-grade plutonium by 
the Department of Energy in the USA, and compared with other dominance 
measuring methods. 
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Introduction 

For the reasons described in Raiffa (1982) and Stewart (1996), the additive model 
is considered to be a valid approach in most real decision-making problems, and is 
widely used. The functional form of the additive model is u(Ai) = j wj uj(xij), where xij 

is the specific performance of attribute Xj for alternative Ai, uj(xij) is the utility 
associated with the above performance for uj, the corresponding component utility 
function representing the decision maker's preferences over the possible attribute 
performances, and wj are the weights or scaling constants for each attribute 
representing their relative importance. 

However, complex decision-making problems are usually plagued with uncertainty, 
and it is impossible to predict with certainty how each alternative under consideration 
will perform. For instance, performances may be intangible or non-monetary as they 
reflect social or environmental impacts. Also, performances may be taken from 
statistics or measurements. Additionally, it is often not easy to elicit precise values for 
the scaling weights representing the relative importance of criteria. They are often 
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described within prescribed bounds. The DM may find it difficult to compare criteria or 
may not want to reveal his or her preferences in public. Moreover, the decision could 
be taken in a group decision-making situation, where incomplete information, such as 
weight intervals, is usually derived from a negotiation process (Jiménez et al., 2005; 
Mateos et al., 2006). 

Many researchers have dealt with imprecise information. Sage and White (1984) 
proposed the model of imprecisely specified multi-attribute utility theory (ISMAUT), 
where preference information about both weights and utilities is not assumed to be 
precise. Malakooti (2000) suggested a new efficient algorithm for ranking alternatives 
when there is incomplete information about the preferences and the value of the 
alternatives. This involves solving a single mathematical programming problem many 
times. Ahn (2003) extends Malakooti's work. Eum et al. (2001) provided linear 
programming characterizations of dominance and potential optimality for decision 
alternatives when information about performances and/or weights is incomplete, 
extended the approach to hierarchical structures (Lee et al., 2002), and developed the 
concepts of weak potential optimality and strong potential optimality (Park, 2004). 
More recently, Mateos et al. (2007) considered the more general case where 
imprecision appears in the alternative performances, as well as in weights and utilities, 
described by means of fixed bounds. Sarabando and Dias (2009) gave a brief overview 
of approaches proposed by different authors to deal with incomplete information. 

In this paper we consider a decision-making problem with m alternatives, A, 
i=1,…,m, and n attributes, Xj, j=1,…,n, where incomplete information about input 
parameters has been incorporated into the decision-making process: 

• Alternative performances are described under uncertainty (x. , /'= 

1,…,m, /=1,…,ri) where x% and x" are the lower and the upper 

performances of the attribute X3for the alternative^,, respectively. 

• Imprecision concerning component utilities (u(·) £ «J (•)],/ = 1,…,«), 

where Uj (•) and u J (•) are the lower and the upper utility functions of the 

attribute^, and 

• Imprecision concerning weights (w,£ \wL
j,w

u
j\, j = 1,…,n), where wL- and 

w Uj are the lower and the upper weights for the attribute Xj. 

One possibility described in the literature for dealing with imprecision attempts to 
eliminate inferior alternatives based on the concept of pairwise dominance. It is often 
worthwhile to output the non-dominated alternatives because of the following property. 
If one alternative Ak dominates another A, then At can be discarded as a worthwhile 
solution for the DM. Given two alternatives Ak and A, alternative Ak dominates At if Dkl 

> 0, DM being the optimum value of the optimization problem: 

Da = min {u(Ak)- u(A) = Y.j wj uMkj) -Y.j wj uMij)} 

s.t. WjL < Wj < WjU, j=1,...,n 



xkf < xkj < Xk,u, j=1,...,n (1) 

XijL <Xij<XijU, j=1,...,n 

uf(xk) < «,-(%) < UjU(Xk,) , j=1,...,n 

UjL(x,j) < Uj(x,j) < UjU(x,j) , j=1,...,n. 

The objective function in the above optimization problem can also be represented 

by w(uk - M/), where w £ W = {(w^,..., wn): w,- £ [wf1, w"\,j = 1,..., n], uk £ Uk = 

{(u1(xkl),...,un(xkn)): uj(xkj) £ [uj(xkj),uf(xkj)\xkj £ [x^,x^], j = l,...,n], 

and ulEUl = {(u1(xll),...,un(xln)): u^x^) £ [u-(xl]),u)I(xlj)], xtj £ [x^xfi], 

7 = 1 4 
A recent approach is to use information about each alternative's intensity of 

dominance, known as dominance measuring methods. Ahn and Park (2008) compute 
both dominating and dominated measures, from which they derive a net dominance. 
This is used as a measure of the strength of preference in the sense that a greater net 
value is better. 

In this paper we introduce a dominance measuring method. This method first 
computes dominance intensities depending on the dominance among alternatives. Then, 
a dominance intensity measure is derived for each alternative as the sum of the 
dominance intensities of that alternative regarding the others. This is used as a measure 
of the strength of the preference. 

The paper is organized as follows. Section 1 proposes the dominance measuring 
method. Section 2 shows how this approach can be applied by solving linear problems. 
Section 3 illustrates the approach with an example. Finally, we outline our conclusions 
in Section 4. 

1. Dominance Measuring Method 

The dominance measuring method we introduce is based on the one proposed in 
Mateos et al. (2009), specifically, on the fact that w(uk - ut) £ [Dkl, -Dlk], Vw £ W, \/uk 

£ Uk, V«/ £ U. Then, the dominance intensity can be defined as follows: 

• If -Dlk< 0 » DM < 0 and Dlk > 0 » alternative At dominates Ak => the 
dominance intensity of alternative Ak over .4/ can be defined as -DIk, where 

DIkl = d(0,[Dkl,-Dlk]) = J ' Dkl Dlk 

+ x(-Dlk-Dkl) 

2 

dx 

fDu-D,2 l-D^-D2 

) +IRP1) 



and d(0, [Dkl,-Dlk]) is the distance from the interval [Dkl,-Dlk] to 0 (see 
Mateos et al., 2007). Note that all values in interval [Dkl, -Dlk] are negative. 

• If DM > 0 <=> DM > 0 and Dlk < 0 <=> alternative Ak dominates At =e> the 
dominance intensity of alternative Ak over Ai is DIa = d([Dkl,— Dlk],0). 
Note that in this case all values in [Dkh -Dik] are positive. 

• If DM < 0 and Dlk < 0, then interval [Dkl, -Dlk] will consist of a positive 
subinterval with positive values in which alternative Ak dominates At and a 
negative subinterval in which alternative Ai dominates Ak. Thus, the 
dominance intensity of alternative Ak over At is DIkl = d([0,-Dlk],0) -
d([Dki,0],0) = {-Dlk + Z)fc;)/V3, i.e. both positive and negative values in 
interval [Dkh -Dik] are considered. 

On the basis of this idea, paired dominance values Dkl are first transformed into 
dominance intensities DIU depending on the dominance among alternatives Ak and A,. 
Then a dominance intensity measure (DIMk) is derived for each alternative Ak as the 
sum of the dominance intensities of alternative Ak regarding the other alternatives. This 
is used as a measure of the strength of preference in the sense that a greater dominance 
intensity measure is better. 

The method can be implemented in the following three steps: 

1. Obtain the paired dominance values Dkl by solving problem (1) and consider 
the following matrix: 

£>21 - … DZ-1 DZ, 

Dm1 Dm2 … Dmm-1 -
_̂ ^ 

2. Obtain the dominance intensity of alternative Ak over Akj, DIk, by applying 
the following method and consider the matrix: 

D/31 DI32 … DlZ-1 DlZ 

DIm1 DIm2 … DImm-1 -
^_ -^ 

If DM > 0, then alternative Ak dominates alternative A, i.e. the dominance 
intensity of alteraative^ t over.4/ is DIkl = d([Dkl, -Dlk\, 0). 
Else (D«< 0): 

• If Dlk > 0, then alternative At dominates alternative Ak, therefore, the 
dominance intensity of alternative Ak over Ai is - DIkl. 

• Else note that alternative At is preferred to alternative Ak for those 
values in w that satisfy Du< w(uk - u,) < 0, and Ak is preferred to A, 



for those values in w that satisfy 0 < w(uk - ut) < -Dm =e> the 
dominance intensity of Ak over .4/ is DIU = (-Dlk + Z)fc;)/V3. 

3. Compute a dominance intensity measure (DIM) for each alternative Ak 

DIMk = Y^i,i*kDhi. 

Rank alternatives according to the DIM values, where the best (rank 1) is the 
alternative with greatest DIM and the worst is the alternative with the least 
DIM. 

A similar simulation study to the one in Mateos et al. (2009) remains to be done to 
compare the proposed method with surrogate weighting methods (Stillwell et al. 1981; 
Barron and Barrett, 1996), the modification of three classical decision rules to 
encompass an imprecise decision context (Puerto et al., 2000), and with dominance 
measuring methods proposed in Ahn and Park (2008) and Mateos et al. (2009). The 
performance of the proposed approach will be analyzed in terms of the best alternative 
and the overall ranking of alternatives. 

2. Using linear programming to compute dominance values 

In the first step of the proposed dominance intensity measure paired dominance 
values Da must be computed solving the optimization problem (1). In this section we 
show that, although the optimization problems to be solved in this context with 
incomplete information are not linear, they can be transformed and then solved by 
linear programming. 

As mentioned earlier, we consider that the decision-making problem includes 
incomplete information about input parameters. Alternative performances are described 
under uncertainty by intervals (xtj £ [x^,x^], i=1,…,m, j=1,…,ri) and attribute weights 
representing their relative importance are imprecise (w,- £ \wf,wf\, j = 1,…,«). 

We also allow for imprecise information in the procedure for assessing of the 
individual utility functions (probability equivalence/certainty equivalence) (Farquhar, 
1984), obtaining a class of utility functions rather than a unique function for each 
attribute. 

Each class of utility functions will be made up of all the utility functions M,(·), 
comprised between H/( · ) and M/(·), where x/ and x" are the least and most preferred 
values by the DM for attribute X; x1, x2 and xj are three intermediate values for the 
attribute X; and [u,1L, u1u], [u 1 , u, ] and [u3, u3u] are the utility intervals that, for 
the DM, represent the values x/, x2 and xf, respectively. 

The implementation of the imprecise weight and utility assessments combining 
different methods is explained in detail for a variety of real applications in Ríos et al. 
(2000) and Mateos et al. (2001). 

The functions H/( · ) and u"(·) are obtained by fitting the cubic splines that go 
through points (x/,0), (x,1, u/L), (x,2, u21), (x3, u3) and (x/,1) and points (x/,0), (x1, 
u™), (x2, Uj2U), (x3, u3) and (x, ,1), respectively. The procedure is as follows. We 
define a cubic spline for each interval, and we get 



for each x £ [x,L, x/]^ay + byx + ci;x
2 + dyx3 

for each x £ [x/, x2]^ a2] + b2pc + c2fc
2 + d2p? 

for each x £ [x,2, x3]^ a3] + b3jx + c3jx
2 + d3jx

3 

for each x £ [x,3, x"\^> a4] + b4ix + c4p? + d4jx
3. 

For each attribute Xj, we have 16 unknown quantities, akj, bkj, ckJ, dkj with k = 
1,2,3,4. We, therefore, need the same number of equations to set out a system and then 
obtain the cubic splines by intervals. The equations/constraints for obtaining H/(-) are: 

1. On the value taken by the utility function at the extremes of the interval: 
a. If the utility function is increasing: 

ay + by XjL + Cy(XjL)2 + dy(XjLf = 0 

a4j + b4j x" + c4](XjU)2 + d4j(XjU)3 = 1 

b. If the utility function is decreasing: 
ay + by XjU + Cy(XjU)2 + dy(x")3 = 1 

a4j + b4j XjL + c4j(x/)2 + d4j(xj)3 = 0 

2. On the values taken by the utility function at the intermediate points of 
the interval: 
Oy + byxj + Cy(x/)2 + dy(xj~f = UjL 

a2j + by x2 + C2J(XJ2)2 + d2j(Xj2)3 = u^ 
a3j + b3j x

3 + C3J(XJ3)2 + d3j(Xj3)3 = u3L 

3. On the continuity of the utility function at the intermediate points of the 
interval: 
ay + byxj + Cy(x/)2 + dy(xj~f = a2j + b2jXj + C2,(x/)2 + d2]{x^)3 

a2j + b2j x
2 + c2j(x

2)2 + d2j(x
2)3 = a3j + b3j x

2 + c3j(x
2)2 + d3]{x2)3 

a3j + b3j x
3 + c3j(x

3)2 + d3j(x
3)3 = a4j + b4j xf + c4j(x

3)2 + d4]{x3)3 

4. On the continuity of the first derivative of the utility function at the 
intermediate points of the interval: 
by + 2cyXjl + 3dy(Xji)2 = b2j + 2c2jx/ + 3d2j(x/)2 

b2j + 2C2JXJ2 + 3d2j(Xj2)2 = b3j + 2c3jx
2 + 3d3j(x

2)2 

b3j + 2C3JXJ3 + 3d3j(Xj3)2 = b4j + 2c4jx
3 + 3d4j{x3)2 

5. On the continuity of the second derivative of the utility function at the 
intermediate points of the interval: 
2cy + 6dyXjl =2c2J + 6d2JXjl 

2c2J + 6d2Jx
2 =2c3J + 6d3Jx

2 

2c3J + 6d3Jx
3 =2c4J + 6d4jx

3 

6. On the first derivative of the utility function at the extremes of the interval 
for the range of each attribute: 

a. If the utility function is increasing: 
by + 2CyXjL + 3dy(XjL)2 = 0 
b4J + 2c4J x/ + 3d4j{XjUf = 0 

b. If the utility function is decreasing: 
by + 2Cy Xj" + 3dy(XjU)2 = 0 
b4j + 2c4jXjL + 3d4j(XjL)2 = 0. 



The uj
U(·) are obtained by solving the same equations after substituting uj

1L, uj
2L 

and uj
3L by uj

1U, uj
2U and uj

3U, respectively, in Eq. 2. Once the extreme utility functions 
uj

L(·) and uj
U(·) have been determined, we know that the condition uj

L(·) ≤ uj(·) ≤ uj
U(·) 

must hold for the true, albeit unknown, utility function uj(·) for attribute Xj . 
We know that given two alternatives Ak and Al, alternative Ak dominates Al if Dkl ≥ 

0, Dkl being the optimum value of the optimization problem (1). 

The objective function of the optimization problem is nonlinear, because the 
variables wj multiply to the variables akj, bkj, ckj, dkj, with k = 1,2,3,4, which correspond 
to the utility function uj(.). Even so, all the constraints are linear, although, due to the 
notation used, they, and specially the last two blocks, do not appear to be at first glance. 
This is because the constraints 

uj
L(xkj) ≤ uj(xkj) ≤ uj

U(xkj) , j=1,...,n 

(2) uj
L(xlj) ≤ uj(xlj) ≤ uj

U(xlj) , j=1,...,n 

represent equations/constraints 1a or 1b - 6a or 6b if constraints 2 are substituted by 

uj
1L ≤ a1j + b1j xj

1 + c1j(xj
1)2 + d1j(xj

1)3 

uj
2L ≤ a2j + b2j xj

2 + c2j(xj
2)2 + d2j(xj

2)3 

uj
3L ≤ a3j + b3j xj

3 + c3j(xj
3)2 + d3j(xj

3)3 

a1j + b1j xj
1 + c1j(xj

1)2 + d1j(xj
1)3 ≤ uj

1U 

a2j + b2j xj
2 + c2j(xj

2)2 + d2j(xj
2)3 ≤ uj

2U 

a3j + b3j xj
3 + c3j(xj

3)2 + d3j(xj
3)3 ≤ uj

3U, 

i.e. constraints (2) represent 19 linear constraints. 

Examining the objective function, we find that it can be rewritten as 

j wj [uj(xkj) - uj(xlj)], 

where uj(xkj) - uj(xlj) does not depend on the weights wj. Moreover, if we carefully 
observe the constraints, we discover that variables wj are independent of the other 
variables. So, taking into account that the weights wj are nonnegative, solving (1) is 
equivalent to solving the optimization problem 

Dkl = min j wj zklj
* 

s.t. wj
L ≤ wj ≤ wj

U, j=1,...,n, 

where zklj
* are the optimal values of the optimization problem 

zklj
* = min uj(xkj) - uj(xlj) 

s.t. xkj
L ≤ xkj ≤ xkj

U, j=1,...,n 



xlj
L ≤ xlj ≤ xlj

U, j=1,...,n (3) 

uj
L(xkj) ≤ uj(xkj) ≤ uj

U(xkj) , j=1,...,n 

uj
L(xlj) ≤ uj(xlj) ≤ uj

U(xlj) , j=1,...,n. 

The solution to (3) can be determined depending on what the characteristics of the 
utility function for attribute Xj are (Mateos et al., 2007): 

• If the utility function is increasing monotone, we demonstrated that zklj
* = 

uj
L(xkj

L) - uj
U(xlj

U) 
• If the utility function is decreasing monotone, we demonstrated that zklj

* = 
uj

L(xkj
U) - uj

U(xlj
L). 

3. Example 

This example is concerned with the selection of a technology for the disposition of 
surplus weapons-grade plutonium by the Department of Energy in the USA. A major 
objective of this decision was to further US efforts to prevent the proliferation of 
nuclear weapons, but other concerns that were addressed include economic, technical, 
institutional, schedule, environmental, and health and safety issues. This problem has 
been studied in depth; see Dyer et al. (1996, 1997, 1998) and Jiménez et al. (2006). 

An objective hierarchy was built with three main objectives at the highest level: 
non-proliferation; environmental, safety and health; and operational effectiveness. 
Each of them was split into other sub-objectives and so on. Finally, 37 lowest level 
objectives were identified. A complete description of the objectives and attributes is 
given in Dyer et al. (1996, 1997). 

A set of thirteen technologies, denoted by Sk, k=1,…,13, were proposed for 
analysis (see Table 1). Reactor alternatives would use surplus plutonium to fabricate 
mixed oxide fuel for nuclear reactors that generate electric power; while immobilitation 
alternatives would immobilitate surplus plutonium by mixing it with different 
substances, like non-radioactive and radioactive glass, or ceramic, and pouring it in 
recipients, like cans, canisters; and direct disposal alternatives would place it in a 
borehole. 

Table 1. Technologies to be evaluated 

Reactor alternatives 
Existing light water reactors, existing facilities 
Existing light water reactors, greenfield facilities 
Partially completed light water reactors 
Evolutionary light water reactors 
CANDU reactors 

Direct disposal alternatives 
S6: Deep borehole (immobilitation) 
S7: Deep borehole (direct emplacement) 

Inmobilization alternatives 
S8: Vitrification greenfield 



S9: Vitrification can-in-canister 
S10: Vitrification adjunt melter 
S11: Ceramic greenfield 
S12: Ceramic can-in-canister 
S13: Electrometallurgical treatment 

The performances of the thirteen technologies in terms of the 37 attributes were 
identified and uncertainty was introduced by means of an attribute deviation of 5% 
leading to intervals, aimed at analyzing the robustness of the final ranking, Jiménez et 
al. (2006). 

On the other hand, the procedures for assessing component utilities and eliciting 
weights did allow for imprecision concerning the decision-makers’ responses. This led 
to classes of utility functions (Fig 1) and weight intervals, respectively. For a detailed 
description of the preference assessment, see Jiménez et al. (2006). 

Figure 1. Class of utility functions. 

If the techniques described in Section 2 are used to solve this problem, the following 
dominance matrix is output: 

u 

\ - 0 . 

-
0.267 
0.375 
0.736 
0.221 
0.253 
0.229 
0.387 
0.041 
0.271 
0.358 
0.039 
0.298 

- 0 . 0 3 9 

— 
- 0 . 2 4 8 
- 0 . 6 1 1 
- 0 . 1 0 9 
-0 .142 
- 0 . 1 1 7 
- 0 . 2 6 3 

0.051 
- 0 . 1 4 6 
- 0 . 2 3 3 

0.053 
- 0 . 1 7 3 

0.015 
-0 .082 

-
- 0 . 5 2 3 
- 0 . 0 4 1 
- 0 . 0 6 7 
- 0 . 0 4 5 
- 0 . 1 8 0 

0.118 
- 0 . 0 7 6 
- 0 . 1 5 3 

0.120 
- 0 . 1 0 0 

0.371 
0.280 
0.212 

-
0.326 
0.311 
0.319 
0.209 
0.468 
0.296 
0.231 
0.470 
0.275 

- 0 . 0 9 6 
- 0 . 2 1 9 
- 0 . 3 1 6 
- 0 . 6 7 5 

-
- 0 . 1 9 1 
- 0 . 1 6 7 
- 0 . 3 2 5 

0.007 
- 0 . 2 0 9 
- 0 . 2 9 6 

0.009 
- 0 . 2 3 6 

-0 .086 
-0 .209 
-0 .305 
-0 .656 
- 0 . 1 4 0 

-
-0 .130 
-0 .292 

0.025 
-0 .176 
-0 .263 

0.026 
-0 .203 

-0 .114 
-0 .237 
-0 .332 
-0 .694 
- 0 . 1 7 8 
-0 .192 

-
- 0 . 3 3 3 
-0 .002 
- 0 . 2 1 6 
- 0 . 3 0 3 
- 0 . 0 0 1 
- 0 . 0 8 1 

0.020 
- 0 . 0 8 8 
- 0 . 1 8 4 
- 0 . 5 2 5 
- 0 . 0 2 8 
-0 .032 
- 0 . 0 2 4 

-
0.124 

-0 .052 
- 0 . 1 3 1 

0.125 
- 0 . 0 8 1 

- 0 . 1 9 3 
- 0 . 3 1 6 
-0 .412 
- 0 . 7 7 3 
- 0 . 2 5 8 
- 0 . 2 7 5 
-0 .252 
- 0 . 4 1 1 

-
- 0 . 2 9 4 
- 0 . 3 8 1 
- 0 . 0 5 3 
-0 .322 

- 0 . 0 6 3 
- 0 . 1 7 3 
- 0 . 2 6 9 
- 0 . 6 2 5 
- 0 . 1 1 5 
- 0 . 1 3 3 
- 0 . 1 0 9 
- 0 . 2 6 1 

0.049 

-
- 0 . 2 3 1 

0.050 
-0 .172 

- 0 . 0 0 1 
- 0 . 1 1 0 
- 0 . 2 0 6 
-0 .552 
- 0 . 0 4 8 
- 0 . 0 5 9 
- 0 . 0 4 5 
- 0 . 1 8 7 

0.105 
- 0 . 0 7 1 

-
0.105 

-0 .102 

-0 .192 
- 0 . 3 1 5 
- 0 . 4 1 1 
-0 .772 
- 0 . 2 5 7 
- 0 . 2 7 5 
-0 .252 
-0 .410 
- 0 . 0 5 3 
-0 .294 
- 0 . 3 8 1 

-
-0 .322 

- 0 . 0 4 1 
-0 .142 
- 0 . 2 3 9 
-0 .597 
-0 .094 
-0 .112 
- 0 . 0 8 9 
-0 .232 

0.071 
- 0 . 1 1 5 
- 0 . 2 0 3 

0.070 

Then, dominance intensities DIkl depending on the dominance among technologies 
Sk and Sl are computed, and used to derive the dominance intensity measure (DIMk) 
(see Table 2). 



Table 2. Dominance intensities DIkl and the resulting DIMk 

s1 

s2 
S3 

S1 

S' 
S° 
S' 
s" 
s* 
s"> 
s" 
s12 

s" 

s1 

-
-0.132 
-0.221 
-0.563 
-0.072 
-0.097 
-0.066 
-0.229 
0.088 

-0.120 
-0.206 
0.088 

-0.149 

S2 

0.132 
-

-0.096 
-0.456 
0.064 
0.039 
0.069 

-0.100 
0.199 
0.015 

-0.071 
0.199 

-0.018 

S3 

0.221 
0.096 

-
-0.378 
0.159 
0.137 
0.166 
0.002 
0.278 
0.112 
0.031 
0.278 
0.080 

y 
0.563 
0.456 
0.378 

-
0.511 
0.285 
0.518 
0.378 
0.627 
0.470 
0.402 
0.627 
0.446 

S5 

0.072 
-0.064 
-0.159 
-0.511 

-
-0.029 
0.006 

-0.171 
0.151 

-0.054 
-0.143 
0.151 

-0.082 

S6 

0.097 
-0.039 
-0.137 
-0.285 
0.029 

-
0.036 

-0.150 
0.167 

-0.025 
-0.118 
0.167 

-0.053 

S7 

0.067 
-0.069 
-0.166 
-0.518 
-0.006 
-0.036 

-
-0.178 
0.144 

-0.062 
-0.149 
0.145 

-0.089 

Ss 

0.229 
0.101 

-0.002 
-0.378 
0.171 
0.150 
0.178 

-
0.280 
0.121 
0.032 
0.280 
0.087 

S' 

s2 
S3 

s4 

S' 
S° 
S'' 

s" 
s* 
s'° 
s" 
s12 

s" 

s" 
-0.088 
-0.199 
-0.278 
-0.627 
-0.151 
-0.167 
-0.144 
-0.280 
-
-0.186 
-0.256 
0.001 
0.209 

Sw 

0.120 
-0.015 
-0.112 
-0.470 
0.054 
0.025 
0.062 

-0.121 
0.186 

-
-0.160 
0.186 

-0.033 

SJJ 

0.206 
0.071 

-0.031 
-0.402 
0.143 
0.118 
0.149 

-0.032 
0.256 
0.160 

-
0.255 
0.058 

S12 

-0.088 
-0.199 
-0.278 
-0.627 
-0.151 
-0.167 
-0.145 
0.80 

-0.001 
-0.186 
-0.255 
-
-0.209 

S13 

0.149 
0.018 

-0.080 
-0.446 
0.082 
0.053 
0.089 

-0.087 
0.209 
0.033 

-0.058 
0.209 

-

DIMk 

1.680 
0.025 

-1.182 
-5.661 
0.834 
0.310 
0.918 

-1.250 
2.583 
0.279 

-0.952 
2.586 

-0.167 

Ranking 

3 
8 
11 
13 
5 
6 
4 
12 
2 
7 
10 
1 
9 

Finally, all we have to do is to rank technologies according to the DIM values. 
Thus the best strategy is S12: Ceramic can-in-canister (2.586), followed by S9: 
Vitrification can-in-canister (2.583) and S1: Existing light water reactors, existing 
facilities (1.680). The worst strategies are S4: Evolutionary light water reactors (-
5.661), S8: Vitrification greenfield (-1.250) and S3: Partially completed light water 
reactors (-1.182). 

These results prove that the ranking output in Jiménez et al. (2006), on the basis of 
average overall utilities (Figure 2), is robust. Moreover, if we applied the dominance 
measuring methods proposed in Ahn and Park (2008), where a net dominance value 
(OUT I) is derived from dominating and dominated measures or just the dominating 
measure is used (OUT II); would output the same ten best ranked technologies in both, 
having the same ranking in OUT II (see Table 3). 

Figure 2. Ranking of technologies on the basis of their average overall utilities. 



Table 3. Comparison of the ranking derived from Ahn and Park’s and the proposed dominance measure 

S1 

S2 

S 3 

S4 

S5 

S6 

S7 

S8 

S 9 

S10 

S11 
S12 

S 13 

DIMk 

1.680 
0.025 
-1.182 
-5.661 
0.834 
0.310 
0.918 
-1.250 
2.583 
0.279 
-0.952 
2.586 
-0.10 

Ranking 

3 
8 
11 
13 
5 
6 
4 
12 
2 
7 
10 
1 
9 

OUT I 

-0.417 

-1.877 
-3.085 
-7.738 
-1.163 
-1.419 
-1.140 
-3.071 
0.921 
-1.623 
-2.702 
0.935 
-1.979 

Ranking 

3 

8 
12 
13 
5 
6 
4 
11 
2 
7 
10 
1 
9 

OUT II 

3.058 

0.099 
-2.071 

-11.506 
1.553 
0.986 
1.706 
-2.197 
4.859 
0.429 
-1.531 
4.868 
-0.254 

Ranking 

3 

8 
11 
13 
5 
6 
4 
12 
2 
7 
10 
1 
9 

Conclusions 

Dominance measuring methods are becoming widely used in a decision-making 
context with incomplete information and have been proved to outperform other 
approaches, like most surrogate weighting methods or the modification of classical 
decision rules to encompass an imprecise decision context. 

In this paper we have described a dominance measuring method that transforms 
paired dominance values into dominance intensities, then used to derive a dominance 
intensity measure. This is used as a measure of the strength of preference in the sense 
that a greater dominance intensity measure is better. 

The method has been used to analyze the robustness of the ranking output in a 
complex decision-making problem centered on the selection of a technology for the 
disposition of surplus weapons-grade plutonium by the Department of Energy in the 
USA. Moreover, it is shown that the results completely match up with those output 
using other dominance measuring methods. 
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