9,705 research outputs found

    Neutrino Scattering in Heterogeneous Supernova Plasmas

    Get PDF
    Neutrinos in core collapse supernovae are likely trapped by neutrino-nucleus elastic scattering. Using molecular dynamics simulations, we calculate neutrino mean free paths and ion-ion correlation functions for heterogeneous plasmas. Mean free paths are systematically shorter in plasmas containing a mixture of ions compared to a plasma composed of a single ion species. This is because neutrinos can scatter from concentration fluctuations. The dynamical response function of a heterogeneous plasma is found to have an extra peak at low energies describing the diffusion of concentration fluctuations. Our exact molecular dynamics results for the static structure factor reduce to the Debye Huckel approximation, but only in the limit of very low momentum transfers.Comment: 11 pages, 13 figure

    Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems

    Get PDF
    We present here a generalization of the scattering-matrix approach for the description of the propagation of electromagnetic waves in nanostructured magneto-optical systems. Our formalism allows us to describe all the key magneto-optical effects in any configuration in periodically patterned multilayer structures. The method can also be applied to describe periodic multilayer systems comprising materials with any type of optical anisotropy. We illustrate the method with the analysis of a recent experiment in which the transverse magneto-optical Kerr effect was measured in a Fe film with a periodic array of subwavelength circular holes. We show, in agreement with the experiments, that the excitation of surface plasmon polaritons in this system leads to a resonant enhancement of the transverse magneto-optical Kerr effect.Comment: 12 pages, 6 figures, submitted to Physical Review

    Sparse 3D Point-cloud Map Upsampling and Noise Removal as a vSLAM Post-processing Step: Experimental Evaluation

    Full text link
    The monocular vision-based simultaneous localization and mapping (vSLAM) is one of the most challenging problem in mobile robotics and computer vision. In this work we study the post-processing techniques applied to sparse 3D point-cloud maps, obtained by feature-based vSLAM algorithms. Map post-processing is split into 2 major steps: 1) noise and outlier removal and 2) upsampling. We evaluate different combinations of known algorithms for outlier removing and upsampling on datasets of real indoor and outdoor environments and identify the most promising combination. We further use it to convert a point-cloud map, obtained by the real UAV performing indoor flight to 3D voxel grid (octo-map) potentially suitable for path planning.Comment: 10 pages, 4 figures, camera-ready version of paper for "The 3rd International Conference on Interactive Collaborative Robotics (ICR 2018)

    Nuclear model effects in Charged Current neutrino--nucleus quasielastic scattering

    Get PDF
    The quasielastic scattering of muon neutrinos on oxygen 16 is studied for neutrino energies between 200 MeV and 1 GeV using a relativistic shell model. Final state interactions are included within the distorted wave impulse approximation, by means of a relativistic optical potential, with and without imaginary part, and of a relativistic mean field potential. For comparison with experimental data the inclusive charged--current quasielastic cross section for νμ\nu_\mu--12C^{12}C scattering in the kinematical conditions of the LSND experiment at Los Alamos is also presented and briefly discussed.Comment: 4 pages, 5 figures, two-column format. Accepted as brief report in Phys. Rev.

    A conserved filamentous assembly underlies the structure of the meiotic chromosome axis.

    Get PDF
    The meiotic chromosome axis plays key roles in meiotic chromosome organization and recombination, yet the underlying protein components of this structure are highly diverged. Here, we show that 'axis core proteins' from budding yeast (Red1), mammals (SYCP2/SYCP3), and plants (ASY3/ASY4) are evolutionarily related and play equivalent roles in chromosome axis assembly. We first identify 'closure motifs' in each complex that recruit meiotic HORMADs, the master regulators of meiotic recombination. We next find that axis core proteins form homotetrameric (Red1) or heterotetrameric (SYCP2:SYCP3 and ASY3:ASY4) coiled-coil assemblies that further oligomerize into micron-length filaments. Thus, the meiotic chromosome axis core in fungi, mammals, and plants shares a common molecular architecture, and likely also plays conserved roles in meiotic chromosome axis assembly and recombination control

    Quasi-periodic flares in EXO 2030+375 observed with INTEGRAL

    Full text link
    Context: Episodic flaring activity is a common feature of X-ray pulsars in HMXBs. In some Be/X-ray binaries flares were observed in quiescence or prior to outbursts. EXO 2030+375 is a Be/X-ray binary showing "normal" outbursts almost every ~46 days, near periastron passage of the orbital revolution. Some of these outbursts were occasionally monitored with the INTEGRAL observatory. Aims: The INTEGRAL data revealed strong quasi-periodic flaring activity during the rising part of one of the system's outburst. Such activity has previously been observed in EXO 2030+375 only once, in 1985 with EXOSAT. (Some indications of single flares have also been observed with other satellites.) Methods: We present the analysis of the flaring behavior of the source based on INTEGRAL data and compare it with the flares observed in EXO 2030+375 in 1985. Results: Based on the observational properties of the flares, we argue that the instability at the inner edge of the accretion disk is the most probable cause of the flaring activity.Comment: Accepted for publication in A&A Lette

    The pre-outburst flare of the A 0535+26 August/September 2005 outburst

    Get PDF
    We study the spectral and temporal behavior of the High Mass X-ray Binary A 0535+26 during a `pre-outburst flare' which took place ~5 d before the peak of a normal (type I) outburst in August/September 2005. We compare the studied behavior with that observed during the outburst. We analyse RXTE observations that monitored A 0535+26 during the outburst. We complete spectral and timing analyses of the data. We study the evolution of the pulse period, present energy-dependent pulse profiles both at the initial pre-outburst flare and close to outburst maximum, and measure how the cyclotron resonance-scattering feature (hereafter CRSF) evolves. We present three main results: a constant period P=103.3960(5)s is measured until periastron passage, followed by a spin-up with a decreasing period derivative of Pdot=(-1.69+/-0.04)x10^(-8)s/s at MJD 53618, and P remains constant again at the end of the main outburst. The spin-up provides evidence for the existence of an accretion disk during the normal outburst. We measure a CRSF energy of Ecyc~50kev during the pre-outburst flare, and Ecyc~46kev during the main outburst. The pulse shape, which varies significantly during both pre-outburst flare and main outburst, evolves strongly with photon energy.Comment: 4 pages, 4 figures, accepted for publication in A&A Letters. To be published in parallel to Postnov et al. 200

    The nuclear and extended mid-infrared emission of Seyfert galaxies

    Full text link
    We present subarcsecond resolution mid-infrared (MIR) images obtained with 8-10 m-class ground-based telescopes of a complete volume-limited (DL<40 Mpc) sample of 24 Seyfert galaxies selected from the Swift/BAT nine month catalog. We use those MIR images to study the nuclear and circumnuclear emission of the galaxies. Using different methods to classify the MIR morphologies on scales of ~400 pc, we find that the majority of the galaxies (75-83%) are extended or possibly extended and 17-25% are point-like. This extended emission is compact and it has low surface brightness compared with the nuclear emission, and it represents, on average, ~30% of the total MIR emission of the galaxies in the sample. We find that the galaxies whose circumnuclear MIR emission is dominated by star formation show more extended emission (650+-700 pc) than AGN-dominated systems (300+-100 pc). In general, the galaxies with point-like MIR morphologies are face-on or moderately inclined (b/a~0.4-1.0), and we do not find significant differences between the morphologies of Sy1 and Sy2. We used the nuclear and circumnuclear fluxes to investigate their correlation with different AGN and SF activity indicators. We find that the nuclear MIR emission (the inner ~70 pc) is strongly correlated with the X-ray emission (the harder the X-rays the better the correlation) and with the [O IV] lambda 25.89 micron emission line, indicating that it is AGN-dominated. We find the same results, although with more scatter, for the circumnuclear emission, which indicates that the AGN dominates the MIR emission in the inner ~400 pc of the galaxies, with some contribution from star formation.Comment: 27 pages, 12 figures, accepted by MNRA

    Comprehensive review of fluorescence applications in gynecology

    Get PDF
    Since the introduction of indocyanine green (ICG) as a fluorophore in near-infrared imaging, fluorescence visualization has become an essential tool in many fields of surgery. In the field of gynecology, recent new applications have been proposed and found their place in clinical practice. Different applications in gynecology were investigated, subcategorized, and overviewed concerning surgical applications and available dyes. Specific applications in which fluorescence-guided surgery was implemented in gynecology are described in this manuscript—namely, sentinel node biopsy, mesometrium visualization, angiography of different organs, safety issues in pregnant women, ureters visualization, detection of peritoneal metastases, targeted fluorophores for cancer detection, fluorescent contamination hysterectomy, lymphography for lower limb lymphedema prevention, tumor margin detection, endometriosis, and metastases mapping. With evolving technology, further innovative research on the new applications of fluorescence visualization in cancer surgery may help to establish these techniques as standards of high-quality surgery in gynecology. However, more investigations are necessary in order to assess if these innovative tools can also be effective to improve patient outcomes and quality of life in different gynecologic malignancies
    • …
    corecore