38 research outputs found
The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes
All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.EU Cost Action [FA1103, 312117]; FWF (Austrian Science Foundation) [P26203-B22, P24569-B25]; Portuguese FCT (Foundation for Science and Technology) [SFRH/BPD/78931/2011]info:eu-repo/semantics/publishedVersio
Curcumin Promotes A-beta Fibrillation and Reduces Neurotoxicity in Transgenic Drosophila
The pathology of Alzheimer's disease (AD) is characterized by the presence of extracellular deposits of misfolded and aggregated amyloid-β (Aβ) peptide and intraneuronal accumulation of tangles comprised of hyperphosphorylated Tau protein. For several years, the natural compound curcumin has been proposed to be a candidate for enhanced clearance of toxic Aβ amyloid. In this study we have studied the potency of feeding curcumin as a drug candidate to alleviate Aβ toxicity in transgenic Drosophila. The longevity as well as the locomotor activity of five different AD model genotypes, measured relative to a control line, showed up to 75% improved lifespan and activity for curcumin fed flies. In contrast to the majority of studies of curcumin effects on amyloid we did not observe any decrease in the amount of Aβ deposition following curcumin treatment. Conformation-dependent spectra from p-FTAA, a luminescent conjugated oligothiophene bound to Aβ deposits in different Drosophila genotypes over time, indicated accelerated pre-fibrillar to fibril conversion of Aβ1–42 in curcumin treated flies. This finding was supported by in vitro fibrillation assays of recombinant Aβ1–42. Our study shows that curcumin promotes amyloid fibril conversion by reducing the pre-fibrillar/oligomeric species of Aβ, resulting in a reduced neurotoxicity in Drosophila
Cooperation of gastric mononuclear phagocytes with Helicobacter pylori during colonization
Helicobacter pylori, the dominant member of the human gastric microbiota, elicits immunoregulatory responses implicated in protective versus pathological outcomes. To evaluate the role of macrophages during infection, we employed a system with a shifted proinflammatory macrophage phenotype by deleting PPARγ in myeloid cells and found a 5- to 10-fold decrease in gastric bacterial loads. Higher levels of colonization in wild-type mice were associated with increased presence of mononuclear phagocytes and in particular with the accumulation of CD11b+F4/80hiCD64+CX3CR1+ macrophages in the gastric lamina propria. Depletion of phagocytic cells by clodronate liposomes in wild-type mice resulted in a reduction of gastric H. pylori colonization compared with nontreated mice. PPARγ-deficient and macrophage-depleted mice presented decreased IL-10–mediated myeloid and T cell regulatory responses soon after infection. IL-10 neutralization during H. pylori infection led to increased IL-17–mediated responses and increased neutrophil accumulation at the gastric mucosa. In conclusion, we report the induction of IL-10–driven regulatory responses mediated by CD11b+F4/80hiCD64+CX3CR1+ mononuclear phagocytes that contribute to maintaining high levels of H. pylori loads in the stomach by modulating effector T cell responses at the gastric mucosa
Positive effects of ectomycorrhizal colonization on growth of seedlings of a tropical tree across a range of forest floor light conditions
In a shadehouse experiment we tested the effects of light, nutrients and ectomycorrhizal fungi (EMF) on the growth of Vatica albiramis van Slooten (Dipterocarpaceae) seedlings. We hypothesised that it is more advantageous for plants to form connections with EMF and to trade carbon for nutrients with EMF under high light than low light. The relationship between seedling growth and the proportion of ectomycorrhizal root tips was expected as positive in high light and as negative in low light. Light conditions simulated the forest understory (low; 3% full sunlight), a small gap (medium; 11%) and a large gap (high; 33%) and a fully factorial combination of nutrients (F−/+) and ectomycorrhizal colonization (EMF−/+) treatments were applied within light conditions. The application of EMF and nutrients did significantly alter seedling growth across the range of forest floor light conditions, however the key hypothesis was rejected as seedling growth under low light was not affected by increased EMF colonization of root tips (light:EMF colonization χ2 = 2.97, p  = 0.23). In addition, the lack of difference in morphotype abundance across light conditions indicated that light changes may not favour the association to specific EMF in seedlings of this particular dipterocarp species. Our results suggest that antagonistic (non-beneficial to the plant) effects due to ectomycorrhizal colonization under a light constrained environment may not affect seedling growth of Vatica albiramis.
Electronic supplementary material: The online version of this article (doi:10.1007/s11104-010-0555-3) contains supplementary material, which is available to authorized users