179 research outputs found

    Thermal plasma synthesis of Li2S nanoparticles for application in lithium-sulfur batteries

    Get PDF
    Abstract : Inductively-coupled thermal plasma processes were used to produce nanosized Li2S. Prior to the syntheses, the feasibility of forming Li2S was first evaluated using FactSage by considering the phase diagrams of sulfur and different lithium precursors in reducing atmospheres; Li2O, LiOH·H2O, Li2CO3 and Li2SO4·H2O all showed promises in producing Li2S nanoparticles, as confirmed by experiments. Argon and hydrogen mixtures were used as plasma gases, and a carbothermal reduction was implemented for Li2SO4·H2O. In addition, carbon-coated Li2S nanoparticles were synthesized with downstream injection of methane. Carbon was shown to stabilize Li2S upon contact with ambient air. The Li2S nanoparticles were electrochemically tested in half-cells using electrolytes containing LiNO3 or Li2S6 as additives. It was found that adding LiNO3 to the electrolyte was detrimental to the electrochemical performance of Li2S, whereas the combination of Li2S6 and LiNO3 as additives doubled the charge and discharge capacities of the half-cell over 10 cycles

    The angular-momentum flux in the solar wind observed during Solar Orbiter's first orbit

    Get PDF
    Aims: We present the first measurements of the angular-momentum flux in the solar wind recorded by the Solar Orbiter spacecraft. Our aim is to validate these measurements to support future studies of the Sun’s angular-momentum loss. Methods: We combined 60-min averages of the proton bulk moments and the magnetic field measured by the Solar Wind Analyser (SWA) and the magnetometer (MAG) onboard Solar Orbiter. We calculated the angular-momentum flux per solid-angle element using data from the first orbit of the mission’s cruise phase in 2020. We separated the contributions from protons and from magnetic stresses to the total angular-momentum flux. Results: The angular-momentum flux varies significantly over time. The particle contribution typically dominates over the magneticfield contribution during our measurement interval. The total angular-momentum flux shows the largest variation and is typically anticorrelated with the radial solar-wind speed. We identify a compression region, potentially associated with a co-rotating interaction region or a coronal mass ejection, which leads to a significant localised increase in the angular-momentum flux, albeit without a significant increase in the angular momentum per unit mass. We repeated our analysis using the density estimate from the Radio and Plasma Waves (RPW) instrument. Using this independent method, we find a decrease in the peaks of positive angular-momentum flux, but otherwise, our results remain consistent. Conclusions: Our results largely agree with previous measurements of the solar wind’s angular-momentum flux in terms of amplitude, variability, and dependence on radial solar-wind bulk speed. Our analysis highlights the potential for more detailed future studies of the solar wind’s angular momentum and its other large-scale properties with data from Solar Orbiter. We emphasise the need for studying the radial evolution and latitudinal dependence of the angular-momentum flux in combination with data from Parker Solar Probe and other assets at heliocentric distances of 1 au and beyond

    AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma

    Get PDF
    A causative understanding of genetic factors that regulate glioblastoma pathogenesis is of central importance. Here we developed an adeno-associated virus-mediated, autochthonous genetic CRISPR screen in glioblastoma. Stereotaxic delivery of a virus library targeting genes commonly mutated in human cancers into the brains of conditional-Cas9 mice resulted in tumors that recapitulate human glioblastoma. Capture sequencing revealed diverse mutational profiles across tumors. The mutation frequencies in mice correlated with those in two independent patient cohorts. Co-mutation analysis identified co-occurring driver combinations such as B2m-Nf1, Mll3-Nf1 and Zc3h13-Rb1, which were subsequently validated using AAV minipools. Distinct from Nf1-mutant tumors, Rb1-mutant tumors are undifferentiated and aberrantly express homeobox gene clusters. The addition of Zc3h13 or Pten mutations altered the gene expression profiles of Rb1 mutants, rendering them more resistant to temozolomide. Our study provides a functional landscape of gliomagenesis suppressors in vivo

    Effect of FeO on the formation of spinel phases and chromium distribution in the CaO-SiO2-MgO-Al2O3-Cr2O3 system

    Full text link
    Synthetic slag samples of the CaO-SiO2-MgO-Al2O3-Cr2O3 system were obtained to clarify the effect of FeO on the formation of spinel phases and Cr distribution. X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS), as well as the thermodynamic software FactSage 6.2, were used for sample characterization. The results show that the addition of FeO can decrease the viscosity of molten slag and the precipitation temperatures of melilite and merwinite. The solidus temperature significantly decreases from 1400 to 1250 degrees C with the increase of FeO content from 0wt% to 6wt%. The addition of FeO could enhance the content of Cr in spinel phases and reduce the content of Cr in soluble minerals, such as merwinite, melilite, and dicalcium silicate. Hence, the addition of FeO is conducive to decreasing Cr leaching.Validerad; 2013; 20130411 (andbra

    Nevoid basal cell carcinoma syndrome (Gorlin syndrome)

    Get PDF
    Nevoid basal cell carcinoma syndrome (NBCCS), also known as Gorlin syndrome, is a hereditary condition characterized by a wide range of developmental abnormalities and a predisposition to neoplasms

    Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms

    Get PDF
    Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration

    Short-Lived Trace Gases in the Surface Ocean and the Atmosphere

    Get PDF
    The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science
    • …
    corecore