6 research outputs found

    An overview of the utilisation of microalgae biomass derived from nutrient recycling of wet market wastewater and slaughterhouse wastewater

    Get PDF
    Microalgae have high nutritional values for aquatic organisms compared to fish meal, because microalgae cells are rich in proteins, lipids, and carbohydrates. However, the high cost for the commercial production of microalgae biomass using fresh water or artificial media limits its use as fish feed. Few studies have investigated the potential of wet market wastewater and slaughterhouse wastewater for the production of microalgae biomass. Hence, this study aims to highlight the potential of these types of wastewater as an alternative superior medium for microalgae biomass as they contain high levels of nutrients required for microalgae growth. This paper focuses on the benefits of microalgae biomass produced during the phycore-mediation of wet market wastewater and slaughterhouse wastewater as fish feed. The extraction techniques for lipids and proteins as well as the studies conducted on the use of microalgae biomass as fish feed were reviewed. The results showed that microalgae biomass can be used as fish feed due to feed utilisation efficiency, physiological activity, increased resistance for several diseases, improved stress response, and improved protein retention

    Microalgal Biomass of Industrial Interest: Methods of Characterization

    No full text
    International audienceMicroalgae represent a new source of biomass for many applications. The advantage of microalgae over higher plants is their high productivities. The photoautotrophic microalgae include all photosynthetic microorganisms, i.e. Cyanobacteria (prokaryotes) or microalgae (eukaryotes). These microorganisms are characterized by a large biodiversity and chimiodiversity. Then, the analysis of microalgal and cyanobacterial biomass often needs specific adaptations of the classical protocols for extraction as well as for quantification of their contents. This chapter reviewed the main analytical methods used for the analysis of microalgae biomass and its main vaporizable compounds: proteins, polysaccharides, lipids, pigments and secondary metabolites
    corecore