8 research outputs found

    Deforestation and Carbon Stock Loss in Brazil’s Amazonian Settlements

    Get PDF
    We estimate deforestation and the carbon stock in 2740 (82 %) of the 3325 settlements in Brazil’s Legal Amazonia region. Estimates are made both using available satellite data and a carbon map for the “pre-modern” period (prior to 1970). We used data from Brazil’s Project for Monitoring Deforestation in Amazonia updated through 2013 and from the Brazilian Biomes Deforestation Monitoring Project (PMDBBS) updated through 2010. To obtain the pre-modern and recent carbon stocks we performed an intersection between a carbon map and a map derived from settlement boundaries and deforestation data. Although the settlements analyzed occupied only 8 % of Legal Amazonia, our results indicate that these settlements contributed 17 % (160,410 km2) of total clearing (forest + non-forest) in Legal Amazonia (967,003 km2). This represents a clear-cutting of 41 % of the original vegetation in the settlements. Out of this total, 72 % (115,634 km2) was in the “Federal Settlement Project” (PA) category. Deforestation in settlements represents 20 % (2.6 Pg C) of the total carbon loss in Legal Amazonia (13.1 Pg C). The carbon stock in remaining vegetation represents 3.8 Pg C, or 6 % of the total remaining carbon stock in Legal Amazonia (58.6 Pg C) in the periods analyzed. The carbon reductions in settlements are caused both by the settlers and by external actors. Our findings suggest that agrarian reform policies contributed directly to carbon loss. Thus, the implementation of new settlements should consider potential carbon stock losses, especially if settlements are created in areas with high carbon stocks. © 2016, The Author(s)

    Electrical Resistivity Imaging and the Saline Water Interface in High-Quality Coastal Aquifers

    No full text
    © 2018 The Author(s) Population growth and changing climate continue to impact on the availability of natural resources. Urbanization of vulnerable coastal margins can place serious demands on shallow groundwater. Here, groundwater management requires definition of coastal hydrogeology, particularly the seawater interface. Electrical resistivity imaging (ERI) appears to be ideally suited for this purpose. We investigate challenges and drivers for successful electrical resistivity imaging with field and synthetic experiments. Two decades of seawater intrusion monitoring provide a basis for creating a geo-electrical model suitable for demonstrating the significance of acquisition and inversion parameters on resistivity imaging outcomes. A key observation is that resistivity imaging with combinations of electrode arrays that include dipole–dipole quadrupoles can be configured to illuminate consequential elements of coastal hydrogeology. We extend our analysis of ERI to include a diverse set of hydrogeological settings along more than 100 km of the coastal margin passing the city of Perth, Western Australia. Of particular importance are settings with: (1) a classic seawater wedge in an unconfined aquifer, (2) a shallow unconfined aquifer over an impermeable substrate, and (3) a shallow multi-tiered aquifer system over a conductive impermeable substrate. We also demonstrate a systematic increase in the landward extent of the seawater wedge at sites located progressively closer to the highly urbanized center of Perth. Based on field and synthetic ERI experiments from a broad range of hydrogeological settings, we tabulate current challenges and future directions for this technology. Our research contributes to resolving the globally significant challenge of managing seawater intrusion at vulnerable coastal margins

    The Epilepsies

    No full text

    Measurement of CP asymmetry in B-s(0) -> (DsK +/-)-K--/+ decays

    Get PDF
    We report the measurements of the CP-violating parameters in B-s(0) -> (DsK +/-)-K--/+ decays observed in pp collisions, using a data set corresponding to an integrated luminosity of 3.0 fb(-1) recorded with the LHCb detector. We measure C-f = 0.73 +/- 0.14 +/- 0.05, A(f)(Delta Gamma) = 0.39 +/- 0.28 +/- 0.15, A() = 0.31 +/- 0.28 +/- 0.15, S-f = -0.52 +/- 0.20 +/- 0.07, S-(f) over bar = -0.49 +/- 0.20 +/- 0.07, where the uncertainties are statistical and systematic, respectively. These parameters are used together with the world-average value of the B-s(0) mixing phase, -2 beta(s), to obtain a measurement of the CKM angle gamma from B-s(0) -> (DsK +/-)-K--/+ decays, yielding gamma - (128 (+17)(-22))degrees modulo 180 degrees, where the uncertainty contains both statistical and systematic contributions. This corresponds to 3.8 sigma evidence for CP violation in the interference between decay and decay after mixing
    corecore