45 research outputs found

    Straw blood cell count, growth, inhibition and comparison to apoptotic bodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mammalian cells transform into individual tubular straw cells naturally in tissues and in response to desiccation related stress <it>in vitro</it>. The transformation event is characterized by a dramatic cellular deformation process which includes: condensation of certain cellular materials into a much smaller tubular structure, synthesis of a tubular wall and growth of filamentous extensions. This study continues the characterization of straw cells in blood, as well as the mechanisms of tubular transformation in response to stress; with specific emphasis placed on investigating whether tubular transformation shares the same signaling pathway as apoptosis.</p> <p>Results</p> <p>There are approximately 100 billion, unconventional, tubular straw cells in human blood at any given time. The straw blood cell count (SBC) is 45 million/ml, which accounts for 6.9% of the bloods dry weight. Straw cells originating from the lungs, liver and lymphocytes have varying nodules, hairiness and dimensions. Lipid profiling reveals severe disruption of the plasma membrane in CACO cells during transformation. The growth rates for the elongation of filaments and enlargement of rabbit straw cells is 0.6~1.1 (ÎŒm/hr) and 3.8 (ÎŒm<sup>3</sup>/hr), respectively. Studies using apoptosis inhibitors and a tubular transformation inhibitor in CACO2 cells and in mice suggested apoptosis produced apoptotic bodies are mediated differently than tubular transformation produced straw cells. A single dose of 0.01 mg/kg/day of p38 MAPK inhibitor in wild type mice results in a 30% reduction in the SBC. In 9 domestic animals SBC appears to correlate inversely with an animal's average lifespan (R<sup>2 </sup>= 0.7).</p> <p>Conclusion</p> <p>Straw cells are observed residing in the mammalian blood with large quantities. Production of SBC appears to be constant for a given animal and may involve a stress-inducible protein kinase (P38 MAPK). Tubular transformation is a programmed cell survival process that diverges from apoptosis. SBCs may be an important indicator of intrinsic aging-related stress.</p

    Characterization of homologous sphingosine-1-phosphate lyase isoforms in the bacterial pathogen Burkholderia pseudomallei

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Sphingolipids (SLs) are ubiquitous elements in eukaryotic membranes and are also found in some bacterial and viral species. As well as playing an integral structural role, SLs also act as potent signalling molecules involved in numerous cellular pathways and have been linked to many human diseases. A central SL signalling molecule is sphingosine-1-phosphate (S1P) whose breakdown is catalysed by sphingosine-1-phosphate lyase (S1PL), a pyridoxal 5 '-phosphate (PLP) dependent enzyme that catalyses the cleavage of S1P to (2E)-hexadecenal (2E-HEX) and phosphoethanolamine (PE). Here we show the pathogenic bacterium Burkholderia pseudomallei K96243 encodes two homologous proteins (S1PL2021 and S1PL2025) that display moderate sequence identity to known eukaryotic and prokaryotic S1PLs. Using an established mass spectrometry-based methodology we show that recombinant S1PL2021 is catalytically active. Using recombinant human fatty aldehyde dehydrogenase (FALDH) we developed a spectrophotometric, enzyme-coupled assay to detect 2E-HEX formation and measure the kinetic constants of the two B. pseudomallei S1PL isoforms. Furthermore, we determined the x-ray crystal structure of the PLP-bound form of S1PL2021 at 2.1 Å resolution revealing the enzyme displays a conserved structural fold and active site architecture comparable with known S1PLs. The combined data suggest that B. pseudomallei has the potential to degrade host SLs in a S1PL-dependent manner.The authors thanks the following for funding: The Biotechnology and Biological Sciences Research Council (BBSRC) for an EastBio Doctoral Training Programme PhD studentship award to C McLean (BB/J01446X/1) and a grant awarded to DJ Campopiano (BB/I013687/1) that supported J Lowther and DJ Clarke. R Custodio was supported by the Defence Science and Technology Laboratory under contract DSTLX-1000060221 (WP1). We thank the staff of the Diamond Light Source, UK for help with data collection. The authors thank Prof. John RW Govan (University of Edinburgh) for his suggestions regarding Burkholderia strains and enthusiastic support of this work. We also thanks Dr. Kevin Ralston for help in the synthesis of 2E-HEX. The data associated with this paper is available to download (http://dx.doi.org/10.7488/ds/1412)

    Spinster Homolog 2 (Spns2) Deficiency Causes Early Onset Progressive Hearing Loss

    Get PDF
    Spinster homolog 2 (Spns2) acts as a Sphingosine-1-phosphate (S1P) transporter in zebrafish and mice, regulating heart development and lymphocyte trafficking respectively. S1P is a biologically active lysophospholipid with multiple roles in signalling. The mechanism of action of Spns2 is still elusive in mammals. Here, we report that Spns2-deficient mice rapidly lost auditory sensitivity and endocochlear potential (EP) from 2 to 3 weeks old. We found progressive degeneration of sensory hair cells in the organ of Corti, but the earliest defect was a decline in the EP, suggesting that dysfunction of the lateral wall was the primary lesion. In the lateral wall of adult mutants, we observed structural changes of marginal cell boundaries and of strial capillaries, and reduced expression of several key proteins involved in the generation of the EP (Kcnj10, Kcnq1, Gjb2 and Gjb6), but these changes were likely to be secondary. Permeability of the boundaries of the stria vascularis and of the strial capillaries appeared normal. We also found focal retinal degeneration and anomalies of retinal capillaries together with anterior eye defects in Spns2 mutant mice. Targeted inactivation of Spns2 in red blood cells, platelets, or lymphatic or vascular endothelial cells did not affect hearing, but targeted ablation of Spns2 in the cochlea using a Sox10-Cre allele produced a similar auditory phenotype to the original mutation, suggesting that local Spns2 expression is critical for hearing in mammals. These findings indicate that Spns2 is required for normal maintenance of the EP and hence for normal auditory function, and support a role for S1P signalling in hearing

    ÉpidĂ©miologie des troubles de l'adaptation dĂ©clenchĂ©s par un facteur de stress professionnel en mĂ©decine gĂ©nĂ©rale

    No full text
    POITIERS-BU MĂ©decine pharmacie (861942103) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Increased phospholipase D activity contributes to tumorigenesis in prostate cancer cell models

    No full text
    International audienceProstate cancer (PCa) is the most frequent cancer among men and the first cause of death over 65. Approximately 90% of patients with advanced disease will develop bone metastasis, which dramatically reduces long-term survival. Therefore, effective therapies need to be developed, especially when disease is still well-localized. Phospholipase D (PLD), an enzyme that hydrolyzes phosphatidylcholine to yield phosphatidic acid, regulates several cellular functions as proliferation, survival, migration or vesicular trafficking. PLD is implicated in numerous diseases such as neurodegenerative, cardiovascular, autoimmune disorders or cancer. Indeed, PLD controls different aspects of oncogenesis including tumor progression and resistance to targeted therapies such as radiotherapy. PLD1 and PLD2 are the only isoforms with catalytic activity involved in cancer. Surprisingly, studies deciphering the role of PLD in the pathophysiology of PCa are scarce. Here we describe the correlation between PLD activity and PLD1 and PLD2 expression in PCa bone metastasis-derived cell lines C4-2B and PC-3. Next, by using PLD pharmacological inhibitors and RNA interference strategy, we validate the implication of PLD1 and PLD2 in cell viability, clonogenicity and proliferation of C4-2B and PC-3 cells and in migration capacity of PC-3 cells. Last, we show an increase in PLD activity as well as PLD2 protein expression during controlled starvation of PC-3 cells, concomitant with an augmentation of its migration capacity. Specifically, upregulation of PLD activity appears to be PKC-independent. Taken together, our results indicate that PLD, and in particular PLD2, could be considered as a potential therapeutic target for the treatment of PCa-derived bone metastasis
    corecore