191 research outputs found

    The fallacy of placing confidence in confidence intervals

    Get PDF
    Interval estimates – estimates of parameters that include an allowance for sampling uncertainty – have long been touted as a key component of statistical analyses. There are several kinds of interval estimates, but the most popular are confidence intervals (CIs): intervals that contain the true parameter value in some known proportion of repeated samples, on average. The width of confidence intervals is thought to index the precision of an estimate; CIs are thought to be a guide to which parameter values are plausible or reasonable; and the confidence coefficient of the interval (e.g., 95 %) is thought to index the plausibility that the true parameter is included in the interval. We show in a number of examples that CIs do not necessarily have any of these properties, and can lead to unjustified or arbitrary inferences. For this reason, we caution against relying upon confidence interval theory to justify interval estimates, and suggest that other theories of interval estimation should be used instead

    Planet Populations as a Function of Stellar Properties

    Full text link
    Exoplanets around different types of stars provide a window into the diverse environments in which planets form. This chapter describes the observed relations between exoplanet populations and stellar properties and how they connect to planet formation in protoplanetary disks. Giant planets occur more frequently around more metal-rich and more massive stars. These findings support the core accretion theory of planet formation, in which the cores of giant planets form more rapidly in more metal-rich and more massive protoplanetary disks. Smaller planets, those with sizes roughly between Earth and Neptune, exhibit different scaling relations with stellar properties. These planets are found around stars with a wide range of metallicities and occur more frequently around lower mass stars. This indicates that planet formation takes place in a wide range of environments, yet it is not clear why planets form more efficiently around low mass stars. Going forward, exoplanet surveys targeting M dwarfs will characterize the exoplanet population around the lowest mass stars. In combination with ongoing stellar characterization, this will help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet

    Parafoveal preview effects from word N+1 and word N+2 during reading: A critical review and Bayesian meta-analysis

    Get PDF
    The use of gaze-contingent display techniques to study reading has shown that readers attend not only to the currently fixated word, but also to the word to the right of the current fixation. However, a critical look at the literature shows that there are a number of questions that cannot be readily answered from the available literature reviews on the topic. First, there is no consensus on whether readers also attend to the second word to the right of fixation. Second, it is not clear whether parafoveal processing is more efficient in languages such as Chinese. Third, it is not well understood whether the measured effects are confounded by the properties of the parafoveal mask. The present study addressed these issues by performing a Bayesian meta-analysis of 93 experiments that used the boundary paradigm (Rayner, 1975). There were three main findings: 1) the advantage of previewing the second word to the right is modest in size and likely not centred on zero; 2) Chinese readers seem to make a more efficient use of parafoveal processing, but this is mostly evident in gaze duration; 3) there are interference effects associated with using different parafoveal masks that roughly increase when the mask is less word-like

    Planetary population synthesis

    Full text link
    In stellar astrophysics, the technique of population synthesis has been successfully used for several decades. For planets, it is in contrast still a young method which only became important in recent years because of the rapid increase of the number of known extrasolar planets, and the associated growth of statistical observational constraints. With planetary population synthesis, the theory of planet formation and evolution can be put to the test against these constraints. In this review of planetary population synthesis, we first briefly list key observational constraints. Then, the work flow in the method and its two main components are presented, namely global end-to-end models that predict planetary system properties directly from protoplanetary disk properties and probability distributions for these initial conditions. An overview of various population synthesis models in the literature is given. The sub-models for the physical processes considered in global models are described: the evolution of the protoplanetary disk, the planets' accretion of solids and gas, orbital migration, and N-body interactions among concurrently growing protoplanets. Next, typical population synthesis results are illustrated in the form of new syntheses obtained with the latest generation of the Bern model. Planetary formation tracks, the distribution of planets in the mass-distance and radius-distance plane, the planetary mass function, and the distributions of planetary radii, semimajor axes, and luminosities are shown, linked to underlying physical processes, and compared with their observational counterparts. We finish by highlighting the most important predictions made by population synthesis models and discuss the lessons learned from these predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the 'Handbook of Exoplanets', planet formation section, section editor: Ralph Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed

    Over-Selectivity is Related to Autism Quotient and Empathizing, But not to Systematizing

    Get PDF
    The relationships of autism quotient (AQ), systematizing (SQ), and empathizing (EQ), with over-selectivity were explored to assess whether over-selectivity is implicated in complex social skills, which has been assumed, but not experimentally examined. Eighty participants (aged 18–60) were trained on a simultaneous discrimination task (AB+CD−), and tested in extinction on the degree to which they had learned about both elements of the reinforced (AB) compound. Higher AQ and lower EQ scorers demonstrated greater over-selectivity, but there was no relationship between SQ and over-selectivity. These results imply that high AQ scorers perform similarly to individuals with ASD on this cognitive task, and that over-selectivity may be related to some complex social skills, like empathy

    Keeping an eye on noisy movements: On different approaches to perceptual-motor skill research and training

    Get PDF
    Contemporary theorising on the complementary nature of perception and action in expert performance has led to the emergence of different emphases in studying movement coordination and gaze behaviour. On the one hand, coordination research has examined the role that variability plays in movement control, evidencing that variability facilitates individualised adaptations during both learning and performance. On the other hand, and at odds with this principle, the majority of gaze behaviour studies have tended to average data over participants and trials, proposing the importance of universal 'optimal' gaze patterns in a given task, for all performers, irrespective of stage of learning. In this article, new lines of inquiry are considered with the aim of reconciling these two distinct approaches. The role that inter- and intra-individual variability may play in gaze behaviours is considered, before suggesting directions for future research

    The Good, the Bad, and the Rare: Memory for Partners in Social Interactions

    Get PDF
    For cooperation to evolve via direct reciprocity, individuals must track their partners' behavior to avoid exploitation. With increasing size of the interaction group, however, memory becomes error prone. To decrease memory effort, people could categorize partners into types, distinguishing cooperators and cheaters. We explored two ways in which people might preferentially track one partner type: remember cheaters or remember the rare type in the population. We assigned participants to one of three interaction groups which differed in the proportion of computer partners' types (defectors rare, equal proportion, or cooperators rare). We extended research on both hypotheses in two ways. First, participants experienced their partners repeatedly by interacting in Prisoner's Dilemma games. Second, we tested categorization of partners as cooperators or defectors in memory tests after a short and long retention interval (10 min and 1 week). Participants remembered rare partner types better than they remembered common ones at both retention intervals. We propose that the flexibility of responding to the environment suggests an ecologically rational memory strategy in social interactions
    • …
    corecore