68 research outputs found

    Single-Step Production of a Recyclable Nanobiocatalyst for Organophosphate Pesticides Biodegradation Using Functionalized Bacterial Magnetosomes

    Get PDF
    Enzymes are versatile catalysts in laboratories and on an industrial scale; improving their immobilization would be beneficial to broadening their applicability and ensuring their (re)use. Lipid-coated nano-magnets produced by magnetotactic bacteria are suitable for a universally applicable single-step method of enzyme immobilization. By genetically functionalizing the membrane surrounding these magnetite particles with a phosphohydrolase, we engineered an easy-to-purify, robust and recyclable biocatalyst to degrade ethyl-paraoxon, a commonly used pesticide. For this, we genetically fused the opd gene from Flavobacterium sp. ATCC 27551 encoding a paraoxonase to mamC, an abundant protein of the magnetosome membrane in Magnetospirillum magneticum AMB-1. The MamC protein acts as an anchor for the paraoxonase to the magnetosome surface, thus producing magnetic nanoparticles displaying phosphohydrolase activity. Magnetosomes functionalized with Opd were easily recovered from genetically modified AMB-1 cells: after cellular disruption with a French press, the magnetic nanoparticles are purified using a commercially available magnetic separation system. The catalytic properties of the immobilized Opd were measured on ethyl-paraoxon hydrolysis: they are comparable with the purified enzyme, with Km (and kcat) values of 58 µM (and 178 s−1) and 43 µM (and 314 s−1) for the immobilized and purified enzyme respectively. The Opd, a metalloenzyme requiring a zinc cofactor, is thus properly matured in AMB-1. The recycling of the functionalized magnetosomes was investigated and their catalytic activity proved to be stable over repeated use for pesticide degradation. In this study, we demonstrate the easy production of functionalized magnetic nanoparticles with suitably genetically modified magnetotactic bacteria that are efficient as a reusable nanobiocatalyst for pesticides bioremediation in contaminated effluents

    Interplay of Magnetic Interactions and Active Movements in the Formation of Magnetosome Chains

    Get PDF
    Magnetotactic bacteria assemble chains of magnetosomes, organelles that contain magnetic nano-crystals. A number of genetic factors involved in the controlled biomineralization of these crystals and the assembly of magnetosome chains have been identified in recent years, but how the specific biological regulation is coordinated with general physical processes such as diffusion and magnetic interactions remains unresolved. Here, these questions are addressed by simulations of different scenarios for magnetosome chain formation, in which various physical processes and interactions are either switched on or off. The simulation results indicate that purely physical processes of magnetosome diffusion, guided by their magnetic interactions, are not sufficient for the robust chain formation observed experimentally and suggest that biologically encoded active movements of magnetosomes may be required. Not surprisingly, the chain pattern is most resembling experimental results when both magnetic interactions and active movement are coordinated. We estimate that the force such active transport has to generate is compatible with forces generated by the polymerization or depolymerization of cytoskeletal filaments. The simulations suggest that the pleiotropic phenotypes of mamK deletion strains may be due to a defect in active motility of magnetosomes and that crystal formation in magneteosome vesicles is coupled to the activation of their active motility in M. gryphiswaldense, but not in M. magneticum

    Temporal rate is not a distinct perceptual metric.

    Get PDF
    yesSensory adaptation experiments have revealed the existence of ‘rate after-effects’ - adapting to a relatively fast rate makes an intermediate test rate feel slow, and adapting to a slow rate makes the same moderate test rate feel fast. The present work aims to deconstruct the concept of rate and clarify how exactly the brain processes a regular sequence of sensory signals. We ask whether rate forms a distinct perceptual metric, or whether it is simply the perceptual aggregate of the intervals between its component signals. Subjects were exposed to auditory or visual temporal rates (a ‘slow’ rate of 1.5 Hz and a ‘fast’ rate of 6 Hz), before being tested with single unfilled intervals of varying durations. Results show adapting to a given rate strongly influences the perceived duration of a single empty interval. This effect is robust across both interval reproduction and duration discrimination judgments. These findings challenge our understanding of rate perception. Specifically, they suggest that contrary to some previous assertions, the perception of sequence rate is strongly influenced by the perception of the sequence’s component duration intervals.This work was supported by a Wellcome Trust [WT097387] grant to NW

    Rate after-effects fail to transfer cross-modally: evidence for distributed sensory timing mechanisms

    Get PDF
    Accurate time perception is critical for a number of human behaviours, such as understanding speech and the appreciation of music. However, it remains unresolved whether sensory time perception is mediated by a central timing component regulating all senses, or by a set of distributed mechanisms, each dedicated to a single sensory modality and operating in a largely independent manner. To address this issue, we conducted a range of unimodal and cross-modal rate adaptation experiments, in order to establish the degree of specificity of classical after- effects of sensory adaptation. Adapting to a fast rate of sensory stimulation typically makes a moderate rate appear slower (repulsive after-effect), and vice versa. A central timing hypothesis predicts general transfer of adaptation effects across modalities, whilst distributed mechanisms predict a high degree of sensory selectivity. Rate perception was quantified by a method of temporal reproduction across all combinations of visual, auditory and tactile senses. Robust repulsive after-effects were observed in all unimodal rate conditions, but were not observed for any cross-modal pairings. Our results show that sensory timing abilities are adaptable but, crucially, that this change is modality-specific - an outcome that is consistent with a distributed sensory timing hypothesis

    Peer Toy Play as a Gateway to Children’s Gender Flexibility: The Effect of (Counter)Stereotypic Portrayals of Peers in Children’s Magazines

    Get PDF
    Extensive evidence has documented the gender stereotypic content of children’s media, and media is recognized as an important socializing agent for young children. Yet, the precise impact of children’s media on the endorsement of gender-typed attitudes and behaviors has received less scholarly attention. We investigated the impact of stereotypic and counter-stereotypic peers pictured in children’s magazines on children’s gender flexibility around toy play and preferences, playmate choice, and social exclusion behavior (n = 82, age 4–7 years-old). British children were randomly assigned to view a picture of a peer-age boy and girl in a magazine playing with either a gender stereotypic or counter-stereotypic toy. In the stereotypic condition, the pictured girl was shown with a toy pony and the pictured boy was shown with a toy car; these toys were reversed in the counter-stereotypic condition. Results revealed significantly greater gender flexibility around toy play and playmate choices among children in the counterstereotypic condition compared to the stereotypic condition, and boys in the stereotypic condition were more accepting of gender-based exclusion than were girls. However, there was no difference in children’s own toy preferences between the stereotypic and counter-stereotypic condition, with children preferring more gender-typed toys overall. Implications of the findings for media, education, and parenting practices are discussed, and the potential for counterstereotypic media portrayals of toy play to shape the gender socialization of young children is explored

    Publisher Correction: Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals

    Get PDF

    Photoconductivity

    No full text
    • …
    corecore