8,184 research outputs found
Transient stability analysis using potential energy indices for determining critical generator sets
In this paper, we propose the enhancement of existing power system stability analysis techniques through the use of a proposed set of potential energy indices, applied for observing the separation of generators into critical sets during transient events. This proposed potential-energy-based description of system transient stability behavior permits the formation of a critical generator cutset, which is then used in a quantitative single machine equivalent (SIME) energy-function analysis of system stability. The derivation of the method will show that the proposed potential energy indices do not rely on a detailed representation of the network model, making the indices suitable for use in a variety of applications. This method enhances the current capabilities of SIME analysis for pre-fault offline stability studies, but may also be useful for near-real-time stability analysis, owing to the lack of dependence of the proposed potential energy indices on the network parameters. The ability to utilize the proposed indices without the need for network parameters or fault location information, typically obtained from updated SCADA data, potentially allows the proposed method to be applied for real-time stability analysis utilizing only PMU input data
Numerical evaluation of equivalence ratio measurement using OH* and CH* chemiluminescence in premixed and non-premixed methane-air flames
We provide the existence and asymptotic description of solitary wave solutions to a class of modified Green–Naghdi systems, modeling the propagation of long surface or internal waves. This class was recently proposed by Duchêne et al. (Stud Appl Math 137:356–415, 2016) in order to improve the frequency dispersion of the original Green–Naghdi system while maintaining the same precision. The solitary waves are constructed from the solutions of a constrained minimization problem. The main difficulties stem from the fact that the functional at stake involves low order non-local operators, intertwining multiplications and convolutions through Fourier multipliers
Numerical evaluation of equivalence ratio measurement using OH* and CH* chemiluminescence in premixed and non-premixed methane-air flames
Two- and three-point functions in two-dimensional Landau-gauge Yang-Mills theory: Continuum results
We investigate the Dyson-Schwinger equations for the gluon and ghost
propagators and the ghost-gluon vertex of Landau-gauge gluodynamics in two
dimensions. While this simplifies some aspects of the calculations as compared
to three and four dimensions, new complications arise due to a mixing of
different momentum regimes. As a result, the solutions for the propagators are
more sensitive to changes in the three-point functions and the ansaetze used
for them at the leading order in a vertex a expansion. Here, we therefore go
beyond this common truncation by including the ghost-gluon vertex
self-consistently for the first time, while using a model for the three-gluon
vertex which reproduces the known infrared asymptotics and the zeros at
intermediate momenta as observed on the lattice. A separate computation of the
three-gluon vertex from the results is used to confirm the stability of this
behavior a posteriori. We also present further arguments for the absence of the
decoupling solution in two dimensions. Finally, we show how in general the
infrared exponent kappa of the scaling solutions in two, three and four
dimensions can be changed by allowing an angle dependence and thus an essential
singularity of the ghost-gluon vertex in the infrared.Comment: 24 pages; added references, improved choices of parameters for vertex
models; identical to version published in JHE
Mitochondrial DNA mutations in individuals occupationally exposed to ionizing radiation
Mutations in a 443-bp amplicon of the hypervariable region HVR1 of the D-loop of mitochondrial DNA (mtDNA) were quantified in DNA extracted from peripheral blood samples of 10 retired radiation workers who had accumulated external radiation doses of .0.9 Sv over the course of their working life and were compared to the levels of mutations in 10 control individuals matched for age and smoking status. The mutation rate in the 10 exposed individuals was 9.92 3 1025 mutations/ nucleotide, and for the controls it was 8.65 3 1025 mutations/ nucleotide, with a procedural error rate of 2.65 3 1025 mutations/ nucleotide. No increase in mtDNA mutations due to radiation exposure was detectable (P 5 0.640). In contrast, chromosomal translocation frequencies, a validated radiobiological technique for retrospective dosimetric purposes, were significantly elevated in the exposed individuals. This suggests that mutations identified through sequencing of mtDNA in peripheral blood lymphocytes do not represent a promising genetic marker of DNA damage after low-dose or low-doserate exposures to ionizing radiation. There was an increase in singleton mutations above that attributable to procedural error in both exposed and control groups that is likely to reflect age-related somatic mutation
Heat and fluid flow in a scraped-surface heat exchanger containing a fluid with temperature-dependent viscosity
Scraped-surface heat exchangers (SSHEs) are extensively used in a wide variety of industrial settings where the continuous processing of fluids and fluid-like materials is involved. The steady non-isothermal flow of a Newtonian fluid with temperature-dependent viscosity in a narrow-gap SSHE when a constant temperature difference is imposed across the gap between the rotor and the stator is investigated. The mathematical model is formulated and the exact analytical solutions for the heat and fluid flow of a fluid with a general dependence of viscosity on temperature for a general blade shape are obtained. These solutions are then presented for the specific case of an exponential dependence of viscosity on temperature. Asymptotic methods are employed to investigate the behaviour of the solutions in several special limiting geometries and in the limits of weak and strong thermoviscosity. In particular, in the limit of strong thermoviscosity (i.e., strong heating or cooling and/or strong dependence of viscosity on temperature) the transverse and axial velocities become uniform in the bulk of the flow with boundary layers forming either just below the blade and just below the stationary upper wall or just above the blade and just above the moving lower wall. Results are presented for the most realistic case of a linear blade which illustrate the effect of varying the thermoviscosity of the fluid and the geometry of the SSHE on the flow
On the leading OPE corrections to the ghost-gluon vertex and the Taylor theorem
This brief note is devoted to a study of genuine non-perturbative corrections
to the Landau gauge ghost-gluon vertex in terms of the non-vanishing
dimension-two gluon condensate. We pay special attention to the kinematical
limit which the bare vertex takes for its tree-level expression at any
perturbative order, according to the well-known Taylor theorem. Based on our
OPE analysis, we also present a simple model for the vertex, in acceptable
agreement with lattice data.Comment: Final version published in JHE
Which doctors and with what problems contact a specialist service for doctors? A cross sectional investigation
Background:
In the United Kingdom, specialist treatment and intervention services for doctors are underdeveloped. The MedNet programme, created in 1997 and funded by the London Deanery, aims to fill this gap by providing a self-referral, face-to-face, psychotherapeutic assessment service for doctors in London and South-East England. MedNet was designed to be a low-threshold service, targeting doctors without formal psychiatric problems. The aim of this study was to delineate the characteristics of doctors utilising the service, to describe their psychological morbidity, and to determine if early intervention is achieved.
Methods:
A cross-sectional study including all consecutive self-referred doctors (n = 121, 50% male) presenting in 2002–2004 was conducted. Measures included standardised and bespoke questionnaires both self-report and clinician completed. The multi-dimensional evaluation included: demographics, CORE (CORE-OM, CORE-Workplace and CORE-A) an instrument designed to evaluate the psychological difficulties of patients referred to outpatient services, Brief Symptom Inventory to quantify caseness and formal psychiatric illness, and Maslach Burnout Inventory.
Results:
The most prevalent presenting problems included depression, anxiety, interpersonal, self-esteem and work-related issues. However, only 9% of the cohort were identified as severely distressed psychiatrically using this measure. In approximately 50% of the sample, problems first presented in the preceding year. About 25% were on sick leave at the time of consultation, while 50% took little or no leave in the prior 12 months. A total of 42% were considered to be at some risk of suicide, with more than 25% considered to have a moderate to severe risk. There were no significant gender differences in type of morbidity, severity or days off sick.
Conclusion:
Doctors displayed high levels of distress as reflected in the significant proportion of those who were at some risk of suicide; however, low rates of severe psychiatric illness were detected. These findings suggest that MedNet clients represent both ends of the spectrum of severity, enabling early clinical engagement for a significant proportion of cases that is of importance both in terms of personal health and protecting patient care, and providing a timely intervention for those who are at risk, a group for whom rapid intervention services are in need and an area that requires further investigation in the UK
The effect of body size on production efficiency in cattle. Breed comparisons and inter-breed relationships
International audienc
Synthetic Lethality of Chk1 Inhibition Combined with p53 and/or p21 Loss During a DNA Damage Response in Normal and Tumor Cells
Cell cycle checkpoints ensure genome integrity and are frequently compromised in human cancers. A therapeutic strategy being explored takes advantage of checkpoint defects in p53-deficient tumors in order to sensitize them to DNA-damaging agents by eliminating Chk1-mediated checkpoint responses. Using mouse models, we demonstrated that p21 is a key determinant of how cells respond to the combination of DNA damage and Chk1 inhibition (combination therapy) in normal cells as well as in tumors. Loss of p21 sensitized normal cells to the combination therapy much more than did p53 loss and the enhanced lethality was partially blocked by CDK inhibition. In addition, basal pools of p21 (p53 independent) provided p53 null cells with protection from the combination therapy. Our results uncover a novel p53-independent function for p21 in protecting cells from the lethal effects of DNA damage followed by Chk1 inhibition. As p21 levels are low in a significant fraction of colorectal tumors, they are predicted to be particularly sensitive to the combination therapy. Results reported in this study support this prediction
- …
