41 research outputs found

    Engineering an aldehyde dehydrogenase toward its substrates, 3-hydroxypropanal and NAD(+), for enhancing the production of 3-hydroxypropionic acid

    Get PDF
    3-Hydroxypropionic acid (3-HP) can be produced via the biological route involving two enzymatic reactions: dehydration of glycerol to 3-hydroxypropanal (3-HPA) and then oxidation to 3-HP. However, commercial production of 3-HP using recombinant microorganisms has been hampered with several problems, some of which are associated with the toxicity of 3-HPA and the efficiency of NAD(+) regeneration. We engineered a-ketoglutaric semialdehyde dehydrogenase (KGSADH) from Azospirillum brasilense for the second reaction to address these issues. The residues in the binding sites for the substrates, 3-HPA and NAD(+), were randomized, and the resulting libraries were screened for higher activity. Isolated KGSADH variants had significantly lower Km values for both the substrates. The enzymes also showed higher substrate specificities for aldehyde and NAD(+), less inhibition by NADH, and greater resistance to inactivation by 3-HPA than the wild-type enzyme. A recombinant Pseudomonas denitrificans strain with one of the engineered KGSADH variants exhibited less accumulation of 3-HPA, decreased levels of inactivation of the enzymes, and higher cell growth than that with the wild-type KGSADH. The flask culture of the P. denitrificans strain with the mutant KGSADH resulted in about 40% increase of 3-HP titer (53 mM) compared with that using the wild-type enzyme (37 mM)

    Expression and Processing of a Small Nucleolar RNA from the Epstein-Barr Virus Genome

    Get PDF
    Small nucleolar RNAs (snoRNAs) are localized within the nucleolus, a sub-nuclear compartment, in which they guide ribosomal or spliceosomal RNA modifications, respectively. Up until now, snoRNAs have only been identified in eukaryal and archaeal genomes, but are notably absent in bacteria. By screening B lymphocytes for expression of non-coding RNAs (ncRNAs) induced by the Epstein-Barr virus (EBV), we here report, for the first time, the identification of a snoRNA gene within a viral genome, designated as v-snoRNA1. This genetic element displays all hallmark sequence motifs of a canonical C/D box snoRNA, namely C/C′- as well as D/D′-boxes. The nucleolar localization of v-snoRNA1 was verified by in situ hybridisation of EBV-infected cells. We also confirmed binding of the three canonical snoRNA proteins, fibrillarin, Nop56 and Nop58, to v-snoRNA1. The C-box motif of v-snoRNA1 was shown to be crucial for the stability of the viral snoRNA; its selective deletion in the viral genome led to a complete down-regulation of v-snoRNA1 expression levels within EBV-infected B cells. We further provide evidence that v-snoRNA1 might serve as a miRNA-like precursor, which is processed into 24 nt sized RNA species, designated as v-snoRNA124pp. A potential target site of v-snoRNA124pp was identified within the 3′-UTR of BALF5 mRNA which encodes the viral DNA polymerase. V-snoRNA1 was found to be expressed in all investigated EBV-positive cell lines, including lymphoblastoid cell lines (LCL). Interestingly, induction of the lytic cycle markedly up-regulated expression levels of v-snoRNA1 up to 30-fold. By a computational approach, we identified a v-snoRNA1 homolog in the rhesus lymphocryptovirus genome. This evolutionary conservation suggests an important role of v-snoRNA1 during γ-herpesvirus infection

    Emerging concepts in biomarker discovery; The US-Japan workshop on immunological molecular markers in oncology

    Get PDF
    Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations

    Efficacy of idebenone on respiratory function in patients with Duchenne muscular dystrophy not using glucocorticoids (DELOS): a double-blind randomised placebo-controlled phase 3 trial

    No full text
    Cardiorespiratory failure is the leading cause of death in Duchenne muscular dystrophy. Based on preclinical and phase 2 evidence, we assessed the efficacy and safety of idebenone in young patients with Duchenne muscular dystrophy who were not taking concomitant glucocorticoids.status: publishe

    Dystrophin quantification and clinical correlations in Becker muscular dystrophy: implications for clinical trials.

    No full text
    Duchenne muscular dystrophy is caused by mutations in the DMD gene that disrupt the open reading frame and prevent the full translation of its protein product, dystrophin. Restoration of the open reading frame and dystrophin production can be achieved by exon skipping using antisense oligonucleotides targeted to splicing elements. This approach aims to transform the Duchenne muscular dystrophy phenotype to that of the milder disorder, Becker muscular dystrophy, typically caused by in-frame dystrophin deletions that allow the production of an internally deleted but partially functional dystrophin. There is ongoing debate regarding the functional properties of the different internally deleted dystrophins produced by exon skipping for different mutations; more insight would be valuable to improve and better predict the outcome of exon skipping clinical trials. To this end, we have characterized the clinical phenotype of 17 patients with Becker muscular dystrophy harbouring in-frame deletions relevant to on-going or planned exon skipping clinical trials for Duchenne muscular dystrophy and correlated it to the levels of dystrophin, and dystrophin-associated protein expression. The cohort of 17 patients, selected exclusively on the basis of their genotype, included 4 asymptomatic, 12 mild and 1 severe patient. All patients had dystrophin levels of >40% of control and significantly higher dystrophin (P = 0.013), β-dystroglycan (P = 0.025) and neuronal nitric oxide synthase (P = 0.034) expression was observed in asymptomatic individuals versus symptomatic patients with Becker muscular dystrophy. Furthermore, grouping the patients by deletion, patients with Becker muscular dystrophy with deletions with an end-point of exon 51 (the skipping of which could rescue the largest group of Duchenne muscular dystrophy deletions) showed significantly higher dystrophin levels (P = 0.034) than those with deletions ending with exon 53. This is the first quantitative study on both dystrophin and dystrophin-associated protein expression in patients with Becker muscular dystrophy with deletions relevant for on-going exon skipping trials in Duchenne muscular dystrophy. Taken together, our results indicate that all varieties of internally deleted dystrophin assessed in this study have the functional capability to provide a substantial clinical benefit to patients with Duchenne muscular dystrophy
    corecore