16 research outputs found

    Bromodomain protein 4 discriminates tissue-specific super-enhancers containing disease-specific susceptibility loci in prostate and breast cancer.

    Get PDF
    Background Epigenetic information can be used to identify clinically relevant genomic variants single nucleotide polymorphisms (SNPs) of functional importance in cancer development. Super-enhancers are cell-specific DNA elements, acting to determine tissue or cell identity and driving tumor progression. Although previous approaches have been tried to explain risk associated with SNPs in regulatory DNA elements, so far epigenetic readers such as bromodomain containing protein 4 (BRD4) and super-enhancers have not been used to annotate SNPs. In prostate cancer (PC), androgen receptor (AR) binding sites to chromatin have been used to inform functional annotations of SNPs.Results Here we establish criteria for enhancer mapping which are applicable to other diseases and traits to achieve the optimal tissue-specific enrichment of PC risk SNPs. We used stratified Q-Q plots and Fisher test to assess the differential enrichment of SNPs mapping to specific categories of enhancers. We find that BRD4 is the key discriminant of tissue-specific enhancers, showing that it is more powerful than AR binding information to capture PC specific risk loci, and can be used with similar effect in breast cancer (BC) and applied to other diseases such as schizophrenia.Conclusions This is the first study to evaluate the enrichment of epigenetic readers in genome-wide associations studies for SNPs within enhancers, and provides a powerful tool for enriching and prioritizing PC and BC genetic risk loci. Our study represents a proof of principle applicable to other diseases and traits that can be used to redefine molecular mechanisms of human phenotypic variation

    Circulating free testosterone and risk of aggressive prostate cancer : Prospective and Mendelian randomisation analyses in international consortia

    Get PDF
    Publisher Copyright: © 2022 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.Previous studies had limited power to assess the associations of testosterone with aggressive disease as a primary endpoint. Further, the association of genetically predicted testosterone with aggressive disease is not known. We investigated the associations of calculated free and measured total testosterone and sex hormone-binding globulin (SHBG) with aggressive, overall and early-onset prostate cancer. In blood-based analyses, odds ratios (OR) and 95% confidence intervals (CI) for prostate cancer were estimated using conditional logistic regression from prospective analysis of biomarker concentrations in the Endogenous Hormones, Nutritional Biomarkers and Prostate Cancer Collaborative Group (up to 25 studies, 14 944 cases and 36 752 controls, including 1870 aggressive prostate cancers). In Mendelian randomisation (MR) analyses, using instruments identified using UK Biobank (up to 194 453 men) and outcome data from PRACTICAL (up to 79 148 cases and 61 106 controls, including 15 167 aggressive cancers), ORs were estimated using the inverse-variance weighted method. Free testosterone was associated with aggressive disease in MR analyses (OR per 1 SD = 1.23, 95% CI = 1.08-1.40). In blood-based analyses there was no association with aggressive disease overall, but there was heterogeneity by age at blood collection (OR for men aged <60 years 1.14, CI = 1.02-1.28; Phet =.0003: inverse association for older ages). Associations for free testosterone were positive for overall prostate cancer (MR: 1.20, 1.08-1.34; blood-based: 1.03, 1.01-1.05) and early-onset prostate cancer (MR: 1.37, 1.09-1.73; blood-based: 1.08, 0.98-1.19). SHBG and total testosterone were inversely associated with overall prostate cancer in blood-based analyses, with null associations in MR analysis. Our results support free testosterone, rather than total testosterone, in the development of prostate cancer, including aggressive subgroups.Peer reviewe

    Large-scale cross-cancer fine-mapping of the 5p15.33 region reveals multiple independent signals.

    Get PDF
    Genome-wide association studies (GWASs) have identified thousands of cancer risk loci revealing many risk regions shared across multiple cancers. Characterizing the cross-cancer shared genetic basis can increase our understanding of global mechanisms of cancer development. In this study, we collected GWAS summary statistics based on up to 375,468 cancer cases and 530,521 controls for fourteen types of cancer, including breast (overall, estrogen receptor [ER]-positive, and ER-negative), colorectal, endometrial, esophageal, glioma, head/neck, lung, melanoma, ovarian, pancreatic, prostate, and renal cancer, to characterize the shared genetic basis of cancer risk. We identified thirteen pairs of cancers with statistically significant local genetic correlations across eight distinct genomic regions. Specifically, the 5p15.33 region, harboring the TERT and CLPTM1L genes, showed statistically significant local genetic correlations for multiple cancer pairs. We conducted a cross-cancer fine-mapping of the 5p15.33 region based on eight cancers that showed genome-wide significant associations in this region (ER-negative breast, colorectal, glioma, lung, melanoma, ovarian, pancreatic, and prostate cancer). We used an iterative analysis pipeline implementing a subset-based meta-analysis approach based on cancer-specific conditional analyses and identified ten independent cross-cancer associations within this region. For each signal, we conducted cross-cancer fine-mapping to prioritize the most plausible causal variants. Our findings provide a more in-depth understanding of the shared inherited basis across human cancers and expand our knowledge of the 5p15.33 region in carcinogenesis

    An integrative multi-omics analysis to identify candidate DNA methylation biomarkers related to prostate cancer risk.

    Get PDF
    It remains elusive whether some of the associations identified in genome-wide association studies of prostate cancer (PrCa) may be due to regulatory effects of genetic variants on CpG sites, which may further influence expression of PrCa target genes. To search for CpG sites associated with PrCa risk, here we establish genetic models to predict methylation (N = 1,595) and conduct association analyses with PrCa risk (79,194 cases and 61,112 controls). We identify 759 CpG sites showing an association, including 15 located at novel loci. Among those 759 CpG sites, methylation of 42 is associated with expression of 28 adjacent genes. Among 22 genes, 18 show an association with PrCa risk. Overall, 25 CpG sites show consistent association directions for the methylation-gene expression-PrCa pathway. We identify DNA methylation biomarkers associated with PrCa, and our findings suggest that specific CpG sites may influence PrCa via regulating expression of candidate PrCa target genes

    Observational and genetic associations between cardiorespiratory fitness and cancer: a UK Biobank and international consortia study

    Get PDF
    BACKGROUND: The association of fitness with cancer risk is not clear. METHODS: We used Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for risk of lung, colorectal, endometrial, breast, and prostate cancer in a subset of UK Biobank participants who completed a submaximal fitness test in 2009-12 (N = 72,572). We also investigated relationships using two-sample Mendelian randomisation (MR), odds ratios (ORs) were estimated using the inverse-variance weighted method. RESULTS: After a median of 11 years of follow-up, 4290 cancers of interest were diagnosed. A 3.5 ml O2⋅min-1⋅kg-1 total-body mass increase in fitness (equivalent to 1 metabolic equivalent of task (MET), approximately 0.5 standard deviation (SD)) was associated with lower risks of endometrial (HR = 0.81, 95% CI: 0.73-0.89), colorectal (0.94, 0.90-0.99), and breast cancer (0.96, 0.92-0.99). In MR analyses, a 0.5 SD increase in genetically predicted O2⋅min-1⋅kg-1 fat-free mass was associated with a lower risk of breast cancer (OR = 0.92, 95% CI: 0.86-0.98). After adjusting for adiposity, both the observational and genetic associations were attenuated. DISCUSSION: Higher fitness levels may reduce risks of endometrial, colorectal, and breast cancer, though relationships with adiposity are complex and may mediate these relationships. Increasing fitness, including via changes in body composition, may be an effective strategy for cancer prevention

    Fine-mapping the HOXB region detects common variants tagging a rare coding allele: evidence for synthetic association in prostate cancer.

    Get PDF
    The HOXB13 gene has been implicated in prostate cancer (PrCa) susceptibility. We performed a high resolution fine-mapping analysis to comprehensively evaluate the association between common genetic variation across the HOXB genetic locus at 17q21 and PrCa risk. This involved genotyping 700 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of 3195 SNPs in 20,440 PrCa cases and 21,469 controls in The PRACTICAL consortium. We identified a cluster of highly correlated common variants situated within or closely upstream of HOXB13 that were significantly associated with PrCa risk, described by rs117576373 (OR 1.30, P = 2.62×10(-14)). Additional genotyping, conditional regression and haplotype analyses indicated that the newly identified common variants tag a rare, partially correlated coding variant in the HOXB13 gene (G84E, rs138213197), which has been identified recently as a moderate penetrance PrCa susceptibility allele. The potential for GWAS associations detected through common SNPs to be driven by rare causal variants with higher relative risks has long been proposed; however, to our knowledge this is the first experimental evidence for this phenomenon of synthetic association contributing to cancer susceptibility

    Bromodomain protein 4 discriminates tissue-specific super-enhancers containing disease-specific susceptibility loci in prostate and breast cancer

    No full text
    Abstract Background Epigenetic information can be used to identify clinically relevant genomic variants single nucleotide polymorphisms (SNPs) of functional importance in cancer development. Super-enhancers are cell-specific DNA elements, acting to determine tissue or cell identity and driving tumor progression. Although previous approaches have been tried to explain risk associated with SNPs in regulatory DNA elements, so far epigenetic readers such as bromodomain containing protein 4 (BRD4) and super-enhancers have not been used to annotate SNPs. In prostate cancer (PC), androgen receptor (AR) binding sites to chromatin have been used to inform functional annotations of SNPs. Results Here we establish criteria for enhancer mapping which are applicable to other diseases and traits to achieve the optimal tissue-specific enrichment of PC risk SNPs. We used stratified Q-Q plots and Fisher test to assess the differential enrichment of SNPs mapping to specific categories of enhancers. We find that BRD4 is the key discriminant of tissue-specific enhancers, showing that it is more powerful than AR binding information to capture PC specific risk loci, and can be used with similar effect in breast cancer (BC) and applied to other diseases such as schizophrenia. Conclusions This is the first study to evaluate the enrichment of epigenetic readers in genome-wide associations studies for SNPs within enhancers, and provides a powerful tool for enriching and prioritizing PC and BC genetic risk loci. Our study represents a proof of principle applicable to other diseases and traits that can be used to redefine molecular mechanisms of human phenotypic variation

    Appraising causal relationships of dietary, nutritional and physical-activity exposures with overall and aggressive prostate cancer: two-sample Mendelian-randomization study based on 79 148 prostate-cancer cases and 61 106 controls

    No full text
    BACKGROUND: Prostate cancer is the second most common male cancer worldwide, but there is substantial geographical variation, suggesting a potential role for modifiable risk factors in prostate carcinogenesis. METHODS: We identified previously reported prostate cancer risk factors from the World Cancer Research Fund (WCRF)'s systematic appraisal of the global evidence (2018). We assessed whether each identified risk factor was causally associated with risk of overall (79 148 cases and 61 106 controls) or aggressive (15 167 cases and 58 308 controls) prostate cancer using Mendelian randomization (MR) based on genome-wide association-study summary statistics from the PRACTICAL and GAME-ON/ELLIPSE consortia. We assessed evidence for replication in UK Biobank (7844 prostate-cancer cases and 204 001 controls). RESULTS: WCRF identified 57 potential risk factors, of which 22 could be instrumented for MR analyses using single nucleotide polymorphisms. For overall prostate cancer, we identified evidence compatible with causality for the following risk factors (odds ratio [OR] per standard deviation increase; 95% confidence interval): accelerometer-measured physical activity, OR = 0.49 (0.33-0.72; P = 0.0003); serum iron, OR = 0.92 (0.86-0.98; P = 0.007); body mass index (BMI), OR = 0.90 (0.84-0.97; P = 0.003); and monounsaturated fat, OR = 1.11 (1.02-1.20; P = 0.02). Findings in our replication analyses in UK Biobank were compatible with our main analyses (albeit with wide confidence intervals). In MR analysis, height was positively associated with aggressive-prostate-cancer risk: OR = 1.07 (1.01-1.15; P = 0.03). CONCLUSIONS: The results for physical activity, serum iron, BMI, monounsaturated fat and height are compatible with causality for prostate cancer. The results suggest that interventions aimed at increasing physical activity may reduce prostate-cancer risk, although interventions to change other risk factors may have negative consequences on other diseases

    The relationship between lipoprotein A and other lipids with prostate cancer risk: A multivariable Mendelian randomisation study

    No full text
    BACKGROUND: Numerous epidemiological studies have investigated the role of blood lipids in prostate cancer (PCa) risk, though findings remain inconclusive to date. The ongoing research has mainly involved observational studies, which are often prone to confounding. This study aimed to identify the relationship between genetically predicted blood lipid concentrations and PCa. METHODS AND FINDINGS: Data for low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides (TG), apolipoprotein A (apoA) and B (apoB), lipoprotein A (Lp(a)), and PCa were acquired from genome-wide association studies in UK Biobank and the PRACTICAL consortium, respectively. We used a two-sample summary-level Mendelian randomisation (MR) approach with both univariable and multivariable (MVMR) models and utilised a variety of robust methods and sensitivity analyses to assess the possibility of MR assumptions violation. No association was observed between genetically predicted concentrations of HDL, TG, apoA and apoB, and PCa risk. Genetically predicted LDL concentration was positively associated with total PCa in the univariable analysis, but adjustment for HDL, TG, and Lp(a) led to a null association. Genetically predicted concentration of Lp(a) was associated with higher total PCa risk in the univariable (ORweighted median per standard deviation (SD) = 1.091; 95% CI 1.028 to 1.157; P = 0.004) and MVMR analyses after adjustment for the other lipid traits (ORIVW per SD = 1.068; 95% CI 1.005 to 1.134; P = 0.034). Genetically predicted Lp(a) was also associated with advanced (MVMR ORIVW per SD = 1.078; 95% CI 0.999 to 1.163; P = 0.055) and early age onset PCa (MVMR ORIVW per SD = 1.150; 95% CI 1.015,1.303; P = 0.028). Although multiple estimation methods were utilised to minimise the effect of pleiotropy, the presence of any unmeasured pleiotropy cannot be excluded and may limit our findings. CONCLUSIONS: We observed that genetically predicted Lp(a) concentrations were associated with an increased PCa risk. Future studies are required to understand the underlying biological pathways of this finding, as it may inform PCa prevention through Lp(a)-lowering strategies

    Shared common variants in prostate cancer and blood lipids

    No full text
    This article is free to read on the publishers website Background Epidemiological and clinical studies suggest comorbidity between prostate cancer (PCA) and cardiovascular disease (CVD) risk factors. However, the relationship between these two phenotypes is still not well understood. Here we sought to identify shared genetic loci between PCA and CVD risk factors. Methods We applied a genetic epidemiology method based on conjunction false discovery rate (FDR) that combines summary statistics from different genome-wide association studies (GWAS), and allows identification of genetic overlap between two phenotypes. We evaluated summary statistics from large, multi-centre GWA studies of PCA (n = 50 000) and CVD risk factors (n = 200 000) [triglycerides (TG), low-density lipoprotein (LDL) cholesterol and high-density lipoprotein (HDL) cholesterol, systolic blood pressure, body mass index, waist-hip ratio and type 2 diabetes (T2D)]. Enrichment of single nucleotide polymorphisms (SNPs) associated with PCA and CVD risk factors was assessed with conditional quantile-quantile plots and the Anderson-Darling test. Moreover, we pinpointed shared loci using conjunction FDR. Results We found the strongest enrichment of P-values in PCA was conditional on LDL and conditional on TG. In contrast, we found only weak enrichment conditional on HDL or conditional on the other traits investigated. Conjunction FDR identified altogether 17 loci; 10 loci were associated with PCA and LDL, 3 loci were associated with PCA and TG and additionally 4 loci were associated with PCA, LDL and TG jointly (conjunction FDR Conclusions We found polygenic overlap between PCA predisposition and blood lipids, in particular LDL and TG, and identified 17 pleiotropic gene loci between PCA and LDL, and PCA and TG, respectively. These findings provide novel pathobiological insights and may have implications for trials using targeting lipid-lowering agents in a prevention or cancer setting
    corecore