3,808 research outputs found

    A mid-IR survey of the L 1641-N region with ISOCAM

    Full text link
    We present an analysis of the L 1641 outflow region using broad-band and narrow-band imaging data at mid-infrared wavelengths from ISOCAM. We detect a total of 34 sources in the 7.657.65^{\prime} x 8.408.40^{\prime} region covered by the broad-band filters. Four of these sources have no reported detection in previous studies of the region. We find that the source previously identified as the near-IR counter-part to the IRAS detected point-source (IRAS 05338-0624) is not the brightest source in the wavelength region of the IRAS 12 \micron\ filter. We find instead that a nearby object (within the beam of IRAS and not detected at near-IR wavelengths) outshines all others sources in the area by a factor of \sim2. We submit that this source is likely to be the IRAS detected point source. A comparison of the near-IR (J-H vs H-K) and mid-IR (J-K vs [6.7 um]-[14 um]) color-color plots shows only four sources with excess emission at near-IR wavelengths, but atleast 85% of all sources show excess emission at mid-IR wavelengths. The CVF spectra suggest a range of evolutionary status in the program stars ranging from embedded YSOs to the young disks. When combined with optical and near-IR age estimates, these results show active current star-formation in the region that has been on-going for at least 2 Myr.Comment: Submitted to ApJ. Abstracted edited for arXiv submission Replaced by version accepted by Ap

    Launch Environment Water Flow Simulations Using Smoothed Particle Hydrodynamics

    Get PDF
    This paper describes the use of Smoothed Particle Hydrodynamics (SPH) to simulate the water flow from the rainbird nozzle system used in the sound suppression system during pad abort and nominal launch. The simulations help determine if water from rainbird nozzles will impinge on the rocket nozzles and other sensitive ground support elements

    Controlled Anisotropic Deformation of Ag Nanoparticles by Si Ion Irradiation

    Full text link
    The shape and alignment of silver nanoparticles embedded in a glass matrix is controlled using silicon ion irradiation. Symmetric silver nanoparticles are transformed into anisotropic particles whose larger axis is along the ion beam. Upon irradiation, the surface plasmon resonance of symmetric particles splits into two resonances whose separation depends on the fluence of the ion irradiation. Simulations of the optical absorbance show that the anisotropy is caused by the deformation and alignment of the nanoparticles, and that both properties are controlled with the irradiation fluence.Comment: Submitted to Phys. Rev. Lett. (October 14, 2005

    Gamma-widths, lifetimes and fluctuations in the nuclear quasi-continuum

    Full text link
    Statistical γ\gamma-decay from highly excited states is determined by the nuclear level density (NLD) and the γ\gamma-ray strength function (γ\gammaSF). These average quantities have been measured for several nuclei using the Oslo method. For the first time, we exploit the NLD and γ\gammaSF to evaluate the γ\gamma-width in the energy region below the neutron binding energy, often called the quasi-continuum region. The lifetimes of states in the quasi-continuum are important benchmarks for a theoretical description of nuclear structure and dynamics at high temperature. The lifetimes may also have impact on reaction rates for the rapid neutron-capture process, now demonstrated to take place in neutron star mergers.Comment: CGS16, Shanghai 2017, Proceedings, 5 pages, 3 figure

    Completing the nuclear reaction puzzle of the nucleosynthesis of 92Mo

    Full text link
    One of the greatest questions for modern physics to address is how elements heavier than iron are created in extreme, astrophysical environments. A particularly challenging part of that question is the creation of the so-called p-nuclei, which are believed to be mainly produced in some types of supernovae. The lack of needed nuclear data presents an obstacle in nailing down the precise site and astrophysical conditions. In this work, we present for the first time measurements on the nuclear level density and average strength function of 92^{92}Mo. State-of-the-art p-process calculations systematically underestimate the observed solar abundance of this isotope. Our data provide stringent constraints on the 91^{91}Nb(p,γ)92(p,{\gamma})^{92}Mo reaction rate, which is the last unmeasured reaction in the nucleosynthesis puzzle of 92^{92}Mo. Based on our results, we conclude that the 92^{92}Mo abundance anomaly is not due to the nuclear physics input to astrophysical model calculations.Comment: Submitted to PR

    Panchromatic observations and modeling of the HV Tau C edge-on disk

    Get PDF
    We present new high spatial resolution (<~ 0.1") 1-5 micron adaptive optics images, interferometric 1.3 mm continuum and 12CO 2-1 maps, and 350 micron, 2.8 and 3.3 mm fluxes measurements of the HV Tau system. Our adaptive optics images reveal an unusually slow orbital motion within the tight HV Tau AB pair that suggests a highly eccentric orbit and/or a large deprojected physical separation. Scattered light images of the HV Tau C edge-on protoplanetary disk suggest that the anisotropy of the dust scattering phase function is almost independent of wavelength from 0.8 to 5 micron, whereas the dust opacity decreases significantly over the same range. The images further reveal a marked lateral asymmetry in the disk that does not vary over a timescale of 2 years. We further detect a radial velocity gradient in the disk in our 12CO map that lies along the same position angle as the elongation of the continuum emission, which is consistent with Keplerian rotation around an 0.5-1 Msun central star, suggesting that it could be the most massive component in the triple system. We use a powerful radiative transfer model to compute synthetic disk observations and use a Bayesian inference method to extract constraints on the disk properties. Each individual image, as well as the spectral energy distribution, of HV Tau C can be well reproduced by our models with fully mixed dust provided grain growth has already produced larger-than-interstellar dust grains. However, no single model can satisfactorily simultaneously account for all observations. We suggest that future attempts to model this source include more complex dust properties and possibly vertical stratification. (Abridged)Comment: 26 pages, 11 figures, editorially accepted for publication in Ap

    A 3-mode, Variable Velocity Jet Model for HH 34

    Full text link
    Variable ejection velocity jet models can qualitatively explain the appearance of successive working surfaces in Herbig-Haro (HH) jets. This paper presents an attempt to explore which features of the HH-34 jet can indeed be reproduced by such a model. From previously published data on this object, we find evidence for the existence of a 3-mode ejection velocity variability, and then explore the implications of such a variability. From simple, analytic considerations it is possible to show that the longer period modes produce a modulation on the shorter period modes, resulting in the formation of ``trains'' of multiple knots. The knots observed close to the source of HH-34 could correspond to such a structure. Finally, a numerical simulation with the ejection velocity variability deduced from the HH-34 data is computed. This numerical simulation shows a quite remarkable resemblance with the observed properties of the HH-34 jet.Comment: 28 pages LaTex, 10 postscript figure

    High-accuracy Penning trap mass measurements with stored and cooled exotic ions

    Full text link
    The technique of Penning trap mass spectrometry is briefly reviewed particularly in view of precision experiments on unstable nuclei, performed at different facilities worldwide. Selected examples of recent results emphasize the importance of high-precision mass measurements in various fields of physics

    XTE J0111.2-7317 : a nebula-embedded X-ray binary in the SMC

    Full text link
    The observed characteristics of the nebulosity surrounding the SMC High Mass X-ray Binary XTE J0111.2-7317 are examined in the context of three possible nebular types: SNR, bowshock and HII region. Observational evidence is presented which appears to support the interpretation that the nebulosity surrounding XTE J0111.2-7317 is an HII region. The source therefore appears to be a normal SMC Be X-ray binary (BeXRB) embedded in a locally enhanced ISM which it has photoionised to create an HII region. This is supported by observations of the X-ray outburst seen with BATSE and RXTE in 1998-1999. It exhibited characteristics typical of a giant or type II outburst in a BeXRB including large spin-up rates, Lx~10E38 erg/sq.cm-s, and a correlation between spin-up rate and pulsed flux. However, the temporal profile of the outburst was unusual, consisting of two similar intensity peaks, with the first peak of shorter duration than the second.Comment: Accepted for publication by MNRA

    Statistical properties of 243^{243}Pu, and 242^{242}Pu(n,γ\gamma) cross section calculation

    Full text link
    The level density and gamma-ray strength function (gammaSF) of 243Pu have been measured in the quasi-continuum using the Oslo method. Excited states in 243Pu were populated using the 242Pu(d,p) reaction. The level density closely follows the constant-temperature level density formula for excitation energies above the pairing gap. The gammaSF displays a double-humped resonance at low energy as also seen in previous investigations of actinide isotopes. The structure is interpreted as the scissors resonance and has a centroid of omega_{SR}=2.42(5)MeV and a total strength of B_{SR}=10.1(15)mu_N^2, which is in excellent agreement with sum-rule estimates. The measured level density and gammaSF were used to calculate the 242Pu(n,gamma) cross section in a neutron energy range for which there were previously no measured data.Comment: 9 pages, 8 figure
    corecore