32 research outputs found

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Microbiota and chronic inflammatory arthritis: an interwoven link

    Full text link

    Acute stress reduces wound-induced activation of microbicidal potential of ex vivo isolated human monocyte-derived macrophages

    Get PDF
    BACKGROUND: Psychological stress delays wound healing but the precise underlying mechanisms are unclear. Macrophages play an important role in wound healing, in particular by killing microbes. We hypothesized that (a) acute psychological stress reduces wound-induced activation of microbicidal potential of human monocyte-derived macrophages (HMDM), and (b) that these reductions are modulated by stress hormone release. METHODS: Fourty-one healthy men (mean age 35±13 years) were randomly assigned to either a stress or stress-control group. While the stress group underwent a standardized short-term psychological stress task after catheter-induced wound infliction, stress-controls did not. Catheter insertion was controlled. Assessing the microbicidal potential, we investigated PMA-activated superoxide anion production by HMDM immediately before and 1, 10 and 60 min after stress/rest. Moreover, plasma norepinephrine and epinephrine and salivary cortisol were repeatedly measured. In subsequent in vitro studies, whole blood was incubated with norepinephrine in the presence or absence of phentolamine (norepinephrine blocker) before assessing HMDM microbicidal potential. RESULTS: Compared with stress-controls, HMDM of the stressed subjects displayed decreased superoxide anion-responses after stress (p's <.05). Higher plasma norepinephrine levels statistically mediated lower amounts of superoxide anion-responses (indirect effect 95% CI: 4.14-44.72). Norepinephrine-treated HMDM showed reduced superoxide anion-production (p<.001). This effect was blocked by prior incubation with phentolamine. CONCLUSIONS: Our results suggest that acute psychological stress reduces wound-induced activation of microbicidal potential of HMDM and that this reduction is mediated by norepinephrine. This might have implications for stress-induced impairment in wound healing

    Genetics and cytogenetics of the potato

    Get PDF
    Tetraploid potato (Solanum tuberosum L.) is a genetically complex, polysomic tetraploid (2n = 4x = 48), highly heterozygous crop, which makes genetic research and utilization of potato wild relatives in breeding difficult. Notwithstanding, the potato reference genome, transcriptome, resequencing, and single nucleotide polymorphism (SNP) genotyping analysis provide new means for increasing the understanding of potato genetics and cytogenetics. An alternative approach based on the use of haploids (2n = 2x = 24) produced from tetraploid S. tuberosum along with available genomic tools have also provided means to get insights into natural mechanisms that take place within the genetic load and chromosomal architecture of tetraploid potatoes. This chapter gives an overview of potato genetic and cytogenetic research relevant to germplasm enhancement and breeding. The reader will encounter findings that open new doors to explore inbred line breeding in potato and strategic roads to access the diversity across the polyploid series of this crop’s genetic resources. The text includes classical concepts and explains the foundations of potato genetics and mechanisms underlying natural cytogenetics phenomena as well as their breeding applications. Hopefully, this chapter will encourage further research that will lead to successfully develop broad-based potato breeding populations and derive highly heterozygous cultivars that meet the demands of having a resilient crop addressing the threats brought by climate change
    corecore