55 research outputs found

    Reviewing the use of resilience concepts in forest sciences

    Get PDF
    Purpose of the review Resilience is a key concept to deal with an uncertain future in forestry. In recent years, it has received increasing attention from both research and practice. However, a common understanding of what resilience means in a forestry context, and how to operationalise it is lacking. Here, we conducted a systematic review of the recent forest science literature on resilience in the forestry context, synthesising how resilience is defined and assessed. Recent findings Based on a detailed review of 255 studies, we analysed how the concepts of engineering resilience, ecological resilience, and social-ecological resilience are used in forest sciences. A clear majority of the studies applied the concept of engineering resilience, quantifying resilience as the recovery time after a disturbance. The two most used indicators for engineering resilience were basal area increment and vegetation cover, whereas ecological resilience studies frequently focus on vegetation cover and tree density. In contrast, important social-ecological resilience indicators used in the literature are socio-economic diversity and stock of natural resources. In the context of global change, we expected an increase in studies adopting the more holistic social-ecological resilience concept, but this was not the observed trend. Summary Our analysis points to the nestedness of these three resilience concepts, suggesting that they are complementary rather than contradictory. It also means that the variety of resilience approaches does not need to be an obstacle for operationalisation of the concept. We provide guidance for choosing the most suitable resilience concept and indicators based on the management, disturbance and application context

    Frequency-agile, rapid scanning spectroscopy

    No full text
    LetterChallenging applications in trace gas measurements require low uncertainty and high acquisition rates. Many cavity-enhanced spectroscopies exhibit significant sensitivity and potential, but their scanning rates are limited by reliance on either mechanical or thermal frequency tuning. Here, we present frequency-agile, rapid scanning spectroscopy (FARS) in which a high-bandwidth electro-optic modulator steps a selected laser sideband to successive optical cavity modes. This approach involves no mechanical motion and allows for a scanning rate of 8 kHz per cavity mode, a rate that is limited only by the cavity response time itself. Unlike rapidly frequency-swept techniques FARS does not reduce the measurement duty cycle, degrade the spectrum's frequency axis or require an unusual cavity configuration. FARS allows for a sensitivity of ~2 × 10−12 cm−1 Hz−1/2 and a tuning range exceeding 70 GHz. This technique shows promise for fast and sensitive trace gas measurements and studies of chemical kinetics.G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges & D. A. Lon

    Oncoplastic Breast Surgery: A Global Perspective on Practice, Availability, and Training

    No full text
    Based on a BSI symposium, ISW 2007, Montreal, Canada.Oncoplastic surgery is the seamless joining of the extirpative and reconstructive aspects of breast surgery that is performed by a single surgeon. A symposium was held at ISW 2007 in Montreal with a prearranged aim to publish an article on the current and historical record of the developing specialty of oncoplastic breast surgery. The presenters and authors are well-known breast surgeons from Australia, Croatia, India, Sweden, and South Africa.Peter L. Malycha, Ian R. Gough, Marko Margaritoni, S. V. S. Deo, Kerstin Sandelin, Ines Buccimazza, Gaurav Agarwa
    corecore