2,059 research outputs found
Influence of nitrogen on tunneling barrier heights and effective masses of electrons and holes at lightly-nitrided SiO2/Si interface
We have determined both the effective masses and the barrier heights for electrons and holes in pure SiO2 and lightly nitrided oxides with various nitrogen concentrations up to 4.5 at %. In contrast to previous studies which were usually carried out by assuming a value for either the effective mass or the barrier height, this study does not make such an assumption. The approach is proven to be reliable by examining the result for the well-studied pure SiO2 thin films. It is observed that with the increase of the nitrogen concentration the effective masses increase while both the barrier heights and the energy gap decrease. © 2004 American Institute of Physics.published_or_final_versio
A prediction approach for multichannel EEG signals modeling using local wavelet SVM
Accurate modeling of the multichannel electroencephalogram (EEG) signal is an important issue in clinical practice. In this paper, we propose a new local spatiotemporal prediction method based on support vector machines (SVMs). Combining with the local prediction method, the sequential minimal optimization (SMO) training algorithm, and the wavelet kernel function, a local SMO-wavelet SVM (WSVM) prediction model is developed to enhance the efficiency, effectiveness, and universal approximation capability of the prediction model. Both the spatiotemporal modeling from the measured time series and the details of the nonlinear modeling procedures are discussed. Simulations and experimental results with real EEG signals show that the proposed method is suitable for real signal processing and is effective in modeling the local spatiotemporal dynamics. This method greatly increases the computational speed and more effectively captures the local information of the signal. © 2006 IEEE.published_or_final_versio
Barrier height change in very thin SiO2 films caused by charge injection
In this paper, we report an investigation of barrier height change in gate oxide caused by charge injection. By analyzing the small change in the post-stress Fowler-Nordheim (FN) tunneling current through the oxide layer, the change of the oxide barrier height due to charge injection is determined quantitatively. The barrier height changes associated with different charge-injection directions and measurement polarities for n-channel metal oxide semiconductor field-effect transistors (MOSFETs) are presented. For comparison a measurement on a p-channel MOSFET is also carried out. For all the cases, the barrier height changes always exhibit a power law dependence on injected charge.published_or_final_versio
The specificity and patterns of staining in human cells and tissues of p16INK4a antibodies demonstrate variant antigen binding
The validity of the identification and classification of human cancer using antibodies to detect biomarker proteins depends upon antibody specificity. Antibodies that bind to the tumour-suppressor protein p16INK4a are widely used for cancer diagnosis and research. In this study we examined the specificity of four commercially available anti-p16INK4a antibodies in four immunological applications. The antibodies H-156 and JC8 detected the same 16 kDa protein in western blot and immunoprecipitation tests, whereas the antibody F-12 did not detect any protein in western blot analysis or capture a protein that could be recognised by the H-156 antibody. In immunocytochemistry tests, the antibodies JC8 and H-156 detected a predominately cytoplasmic localised antigen, whose signal was depleted in p16INK4a siRNA experiments. F-12, in contrast, detected a predominately nuclear located antigen and there was no noticeable reduction in this signal after siRNA knockdown. Furthermore in immunohistochemistry tests, F-12 generated a different pattern of staining compared to the JC8 and E6H4 antibodies. These results demonstrate that three out of four commercially available p16INK4a antibodies are specific to, and indicate a mainly cytoplasmic localisation for, the p16INK4a protein. The F-12 antibody, which has been widely used in previous studies, gave different results to the other antibodies and did not demonstrate specificity to human p16INK4a. This work emphasizes the importance of the validation of commercial antibodies, aside to the previously reported use, for the full verification of immunoreaction specificity
Rare B Decays with a HyperCP Particle of Spin One
In light of recent experimental information from the CLEO, BaBar, KTeV, and
Belle collaborations, we investigate some consequences of the possibility that
a light spin-one particle is responsible for the three Sigma^+ -> p mu^+ mu^-
events observed by the HyperCP experiment. In particular, allowing the new
particle to have both vector and axial-vector couplings to ordinary fermions,
we systematically study its contributions to various processes involving
b-flavored mesons, including B-Bbar mixing as well as leptonic, inclusive, and
exclusive B decays. Using the latest experimental data, we extract bounds on
its couplings and subsequently estimate upper limits for the branching ratios
of a number of B decays with the new particle. This can serve to guide
experimental searches for the particle in order to help confirm or refute its
existence.Comment: 17 pages, 3 figures; discussion on spin-0 case modified, few errors
corrected, main conclusions unchange
Genomic-Bioinformatic Analysis of Transcripts Enriched in the Third-Stage Larva of the Parasitic Nematode Ascaris suum
Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to ‘biological process’ (n = 68), ‘cellular component’ (n = 50), or ‘molecular function’ (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein–protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a basis for future functional genomic studies to elucidate molecular aspects governing larval developmental processes in A. suum and/or the transition to parasitism
Cryptanalysis of a data security protection scheme for VoIP
A voice-over-Internet protocol technique with a new hierarchical data security protection (HDSP) scheme using a secret chaotic bit sequence has been recently proposed. Some insecure properties of the HDSP scheme are pointed out and then used to develop known/chosen-plaintext attacks. The main findings are: given n known plaintexts, about (100–(50/2n))% of secret chaotic bits can be uniquely determined; given only one specially-chosen plaintext, all secret chaotic bits can be uniquely derived; and the secret key can be derived with practically small computational complexity when only one plaintext is known (or chosen). These facts reveal that HDSP is very weak against known/chosen-plaintext attacks. Experiments are given to show the feasibility of the proposed attacks. It is also found that the security of HDSP against the brute-force attack is not practically strong. Some countermeasures are discussed for enhancing the security of HDSP and several basic principles are suggested for the design of a secure encryption scheme
Superconductivity in HfTe5 across weak to strong topological insulator transition induced via pressures
Recently, theoretical studies show that layered HfTe5 is at the boundary of weak & strong topological insulator (TI) and might crossover to a Dirac semimetal state by changing lattice parameters. The topological properties of 3D stacked HfTe5 are expected hence to be sensitive to pressures tuning. Here, we report pressure induced phase evolution in both electronic & crystal structures for HfTe5 with a culmination of pressure induced superconductivity. Our experiments indicated that the temperature for anomaly resistance peak (Tp) due to Lifshitz transition decreases first before climbs up to a maximum with pressure while the Tp minimum corresponds to the transition from a weak TI to strong TI. The HfTe5 crystal becomes superconductive above ~5.5 GPa where the Tp reaches maximum. The highest superconducting transition temperature (Tc) around 5 K was achieved at 20 GPa. Crystal structure studies indicate that HfTe5 transforms from a Cmcm phase across a monoclinic C2/m phase then to a P-1 phase with increasing pressure. Based on transport, structure studies a comprehensive phase diagram of HfTe5 is constructed as function of pressure. The work provides valuable experimental insights into the evolution on how to proceed from a weak TI precursor across a strong TI to superconductors
The Effects of Cocaine on Different Redox Forms of Cysteine and Homocysteine, and on Labile, Reduced Sulfur in the Rat Plasma Following Active versus Passive Drug Injections
Received: 28 November 2012 / Revised: 19 April 2013 / Accepted: 6 May 2013 / Published online: 16 May 2013
The Author(s) 2013. This article is published with open access at Springerlink.comThe aim of the present studies was to evaluate
cocaine-induced changes in the concentrations of different
redox forms of cysteine (Cys) and homocysteine (Hcy),
and products of anaerobic Cys metabolism, i.e., labile,
reduced sulfur (LS) in the rat plasma. The above-mentioned
parameters were determined after i.p. acute and
subchronic cocaine treatment as well as following i.v.
cocaine self-administration using the yoked procedure.
Additionally, Cys, Hcy, and LS levels were measured
during the 10-day extinction training in rats that underwent
i.v. cocaine administration. Acute i.p. cocaine treatment
increased the total and protein-bound Hcy contents,
decreased LS, and did not change the concentrations of Cys
fractions in the rat plasma. In turn, subchronic i.p. cocaine administration significantly increased free Hcy and lowered
the total and protein-bound Cys concentrations while
LS level was unchanged. Cocaine self-administration
enhanced the total and protein-bound Hcy levels, decreased
LS content, and did not affect the Cys fractions. On the
other hand, yoked cocaine infusions did not alter the concentration
of Hcy fractions while decreased the total and
protein-bound Cys and LS content. This extinction training
resulted in the lack of changes in the examined parameters
in rats with a history of cocaine self-administration while in
the yoked cocaine group an increase in the plasma free Cys
fraction and LS was seen. Our results demonstrate for the
first time that cocaine does evoke significant changes in
homeostasis of thiol amino acids Cys and Hcy, and in some
products of anaerobic Cys metabolism, which are dependent
on the way of cocaine administration
Exome-wide association analysis reveals novel coding sequence variants associated with lipid traits in Chinese
published_or_final_versio
- …
