89 research outputs found
Comparing the use of ERA5 reanalysis dataset and ground-based agrometeorological data under different climates and topography in Italy
Study region: The study region is represented by seven irrigation districts distributed under different climate and topography conditions in Italy. Study focus: This study explores the reliability and consistency of the global ERA5 single levels and ERA5-Land reanalysis datasets in predicting the main agrometeorological estimates commonly used for crop water requirements calculation. In particular, the reanalysis data was compared, variable-by-variable (e.g., solar radiation, R-s; air temperature, T-air; relative humidity, RH; wind speed, u(10); reference evapotranspiration, ET0), with in situ agrometeorological obser-vations obtained from 66 automatic weather stations (2008-2020). In addition, the presence of a climate-dependency on their accuracy was assessed at the different irrigation districts. New hydrological insights for the region: A general good agreement was obtained between observed and reanalysis agrometeorological variables at both daily and seasonal scales. The best perfor-mance was obtained for T-air, followed by RH, R-s, and u(10) for both reanalysis datasets, especially under temperate climate conditions. These performances were translated into slightly higher accuracy of ET0 estimates by ERA5-Land product, confirming the potential of using reanalysis datasets as an alternative data source for retrieving the ET0 and overcoming the unavailability of observed agrometeorological data
Comparing the use of ERA5 reanalysis dataset and ground-based agrometeorological data under different climates and topography in Italy
Study region: The study region is represented by seven irrigation districts distributed under different climate and topography conditions in Italy. Study focus: This study explores the reliability and consistency of the global ERA5 single levels and ERA5-Land reanalysis datasets in predicting the main agrometeorological estimates commonly used for crop water requirements calculation. In particular, the reanalysis data was compared, variable-by-variable (e.g., solar radiation, R-s; air temperature, T-air; relative humidity, RH; wind speed, u(10); reference evapotranspiration, ET0), with in situ agrometeorological obser-vations obtained from 66 automatic weather stations (2008-2020). In addition, the presence of a climate-dependency on their accuracy was assessed at the different irrigation districts. New hydrological insights for the region: A general good agreement was obtained between observed and reanalysis agrometeorological variables at both daily and seasonal scales. The best perfor-mance was obtained for T-air, followed by RH, R-s, and u(10) for both reanalysis datasets, especially under temperate climate conditions. These performances were translated into slightly higher accuracy of ET0 estimates by ERA5-Land product, confirming the potential of using reanalysis datasets as an alternative data source for retrieving the ET0 and overcoming the unavailability of observed agrometeorological data
Long-chain polyphosphates impair SARS-CoV-2 infection and replication
Inorganic polyphosphates (polyPs) are linear polymers composed of repeated phosphate (PO43−) units linked together by multiple high-energy phosphoanhydride bonds. In addition to being a source of energy, polyPs have cytoprotective and antiviral activities. Here, we investigated the antiviral activities of long-chain polyPs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In molecular docking analyses, polyPs interacted with several conserved amino acid residues in angiotensin-converting enzyme 2 (ACE2), the host receptor that facilitates virus entry, and in viral RNA-dependent RNA polymerase (RdRp). ELISA and limited proteolysis assays using nano– LC-MS/MS mapped polyP120 binding to ACE2, and site-directed mutagenesis confirmed interactions between ACE2 and SARS-CoV-2 RdRp and identified the specific amino acid residues involved. PolyP120 enhanced the proteasomal degradation of both ACE2 and RdRp, thus impairing replication of the British B.1.1.7 SARS-CoV-2 variant. We thus tested polyPs for functional interactions with the virus in SARS-CoV-2–infected Vero E6 and Caco2 cells and in primary human nasal epithelial cells. Delivery of a nebulized form of polyP120 reduced the amounts of viral positive-sense genomic and subgenomic RNAs, of RNA transcripts encoding proinflammatory cytokines, and of viral structural proteins, thereby presenting SARS-CoV-2 infection in cells in vitro
Genotype-phenotype correlation and functional studies in patients with cystic fibrosis bearing CFTR complex alleles
Background The effect of complex alleles in cystic fibrosis (CF) is poorly defined for the lack of functional studies. Objectives To describe the genotype-phenotype correlation and the results of either in vitro and ex vivo studies performed on nasal epithelial cells (NEC) in a cohort of patients with CF carrying cystic fibrosis transmembrane conductance regulator (CFTR) complex alleles. Methods We studied 70 homozygous, compound heterozygous or heterozygous for CFTR mutations: p. [Arg74Trp;Val201Met;Asp1270Asn], n=8; p.[Ile148Thr; Ile1023_Val1024del], n=5; p.[Arg117Leu;Leu997Phe], n=6; c.[1210-34TG[12];1210-12T[5];2930C>T], n=3; p. [Arg74Trp;Asp1270Asn], n=4; p.Asp1270Asn, n=2; p. Ile148Thr, n=6; p.Leu997Phe, n=36. In 39 patients, we analysed the CFTR gating activity on NEC in comparison with patients with CF (n=8) and carriers (n=4). Finally, we analysed in vitro the p.[Arg74Trp;Val201Met;Asp1270Asn] complex allele. Results The p.[Ile148Thr;Ile1023_Val1024del] caused severe CF in five compound heterozygous with a class I-II mutation. Their CFTR activity on NEC was comparable with patients with two class I-II mutations (mean 7.3% vs 6.9%). The p.[Arg74Trp;Asp1270Asn] and the p. Asp1270Asn have scarce functional effects, while p. [Arg74Trp;Val201Met;Asp1270Asn] caused mild CF in four of five subjects carrying a class I-II mutation in trans, or CFTR-related disorders (CFTR-RD) in three having in trans a class IV-V mutation. The p.[Arg74Trp;Val201Met; Asp1270Asn] causes significantly (pT] and a class I-II mutation had mild CF or CFTR-RD (gating activity: 18.5-19.0%). Conclusions The effect of complex alleles partially depends on the mutation in trans. Although larger studies are necessary, the CFTR activity on NEC is a rapid contributory tool to classify patients with CFTR dysfunction
An Efficient Modular Approach for the Assembly of S-Linked Glycopeptoids
A short and convenient methodology for the synthesis of S-glycosylated peptoid models is described. The thioglycosylated building blocks were prepared from proper peracetylated sugars via glycosyl iodides in a one-pot fashion and directly employed in a submonomer solidphase strategy
- …