2,774 research outputs found
An integrated study of earth resources in the state of California using remote sensing techniques
The University of California has been conducting an investigation which seeks to determine the usefulness of modern remote sensing techniques for studying various components of California's earth resources complex. Most of the work has concentrated on California's water resources, but with some attention being given to other earth resources as well and to the interplay between them and California's water resources
Use of ERTS-1 data in identification, classification, and mapping of salt-affected soils in California
There are no author-identified significant results in this report
Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves
Individual processes shaping geographical patterns of biodiversity are increasingly understood, but their complex interactions on broad spatial and temporal scales remain beyond the reach of analytical models and traditional experiments. To meet this challenge, we built a spatially explicit, mechanistic simulation model implementing adaptation, range shifts, fragmentation, speciation, dispersal, competition, and extinction, driven by modeled climates of the past 800,000 years in South America. Experimental topographic smoothing confirmed the impact of climate heterogeneity on diversification. The simulations identified regions and episodes of speciation (cradles), persistence (museums), and extinction (graves). Although the simulations had no target pattern and were not parameterized with empirical data, emerging richness maps closely resembled contemporary maps for major taxa, confirming powerful roles for evolution and diversification driven by topography and climate
Resuscitation and quantification of stressed Escherichia coli K12 NCTC8797 in water samples
The aim of this study was to investigate the impact on numbers of using different media for the enumeration of Escherichia coli subjected to stress, and to evaluate the use of different resuscitation methods on bacterial numbers. E. coli was subjected to heat stress by exposure to 55 °C for 1 h or to light-induced oxidative stress by exposure to artificial light for up to 8 h in the presence of methylene blue. In both cases, the bacterial counts on selective media were below the limits of detection whereas on non-selective media colonies were still produced. After resuscitation in non-selective media, using a multi-well MPN resuscitation method or resuscitation on membrane filters, the bacterial counts on selective media matched those on non-selective media. Heat and light stress can affect the ability of E. coli to grow on selective media essential for the enumeration as indicator bacteria. A resuscitation method is essential for the recovery of these stressed bacteria in order to avoid underestimation of indicator bacteria numbers in water. There was no difference in resuscitation efficiency using the membrane filter and multi-well MPN methods. This study emphasises the need to use a resuscitation method if the numbers of indicator bacteria in water samples are not to be underestimated. False-negative results in the analysis of drinking water or natural bathing waters could have profound health effects
Rings in the Solar System: a short review
Rings are ubiquitous around giant planets in our Solar System. They evolve
jointly with the nearby satellite system. They could form either during the
giant planet formation process or much later, as a result of large scale
dynamical instabilities either in the local satellite system, or at the
planetary scale. We review here the main characteristics of rings in our solar
system, and discuss their main evolution processes and possible origin. We also
discuss the recent discovery of rings around small bodies.Comment: Accepted for the Handbook of Exoplanet
From Heisenberg matrix mechanics to EBK quantization: theory and first applications
Despite the seminal connection between classical multiply-periodic motion and
Heisenberg matrix mechanics and the massive amount of work done on the
associated problem of semiclassical (EBK) quantization of bound states, we show
that there are, nevertheless, a number of previously unexploited aspects of
this relationship that bear on the quantum-classical correspondence. In
particular, we emphasize a quantum variational principle that implies the
classical variational principle for invariant tori. We also expose the more
indirect connection between commutation relations and quantization of action
variables. With the help of several standard models with one or two degrees of
freedom, we then illustrate how the methods of Heisenberg matrix mechanics
described in this paper may be used to obtain quantum solutions with a modest
increase in effort compared to semiclassical calculations. We also describe and
apply a method for obtaining leading quantum corrections to EBK results.
Finally, we suggest several new or modified applications of EBK quantization.Comment: 37 pages including 3 poscript figures, submitted to Phys. Rev.
Interaction of Vibrio cholerae non-O1/non-O139 with Copepods, Cladocerans and Competing Bacteria in the Large Alkaline Lake Neusiedler See, Austria
Vibrio cholerae is a human pathogen and natural inhabitant of aquatic environments. Serogroups O1/O139 have been associated with epidemic cholera, while non-O1/non-O139 serogroups usually cause human disease other than classical cholera. V. cholerae non-O1/non-O139 from the Neusiedler See, a large Central European lake, have caused ear and wound infections, including one case of fatal septicaemia. Recent investigations demonstrated rapid planktonic growth of V. cholerae non-O1/non-O139 and correlation with zooplankton biomass. The aim of this study was to elucidate the interaction of autochthonous V. cholerae with two dominant crustacean zooplankton species in the lake and investigate the influence of the natural bacterial community on this interaction. An existing data set was evaluated for statistical relationships between zooplankton species and V. cholerae and co-culture experiments were performed in the laboratory. A new fluorescence in situ hybridisation protocol was applied for quantification of V. cholerae non-O1/non-O139 cells, which significantly reduced analysis time. The experiments clearly demonstrated a significant relationship of autochthonous V. cholerae non-O1/non-O139 with cladocerans by promoting growth of V. cholerae non-O1/non-O139 in the water and on the surfaces of the cladocerans. In contrast, copepods had a negative effect on the growth of V. cholerae non-O1/non-O139 via competing bacteria from their surfaces. Thus, beside other known factors, biofilm formation by V. cholerae on crustacean zooplankton appears to be zooplankton taxon specific and may be controlled by the natural bacterial community. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00248-010-9764-9) contains supplementary material, which is available to authorized users
Niche as a determinant of word fate in online groups
Patterns of word use both reflect and influence a myriad of human activities
and interactions. Like other entities that are reproduced and evolve, words
rise or decline depending upon a complex interplay between {their intrinsic
properties and the environments in which they function}. Using Internet
discussion communities as model systems, we define the concept of a word niche
as the relationship between the word and the characteristic features of the
environments in which it is used. We develop a method to quantify two important
aspects of the size of the word niche: the range of individuals using the word
and the range of topics it is used to discuss. Controlling for word frequency,
we show that these aspects of the word niche are strong determinants of changes
in word frequency. Previous studies have already indicated that word frequency
itself is a correlate of word success at historical time scales. Our analysis
of changes in word frequencies over time reveals that the relative sizes of
word niches are far more important than word frequencies in the dynamics of the
entire vocabulary at shorter time scales, as the language adapts to new
concepts and social groupings. We also distinguish endogenous versus exogenous
factors as additional contributors to the fates of words, and demonstrate the
force of this distinction in the rise of novel words. Our results indicate that
short-term nonstationarity in word statistics is strongly driven by individual
proclivities, including inclinations to provide novel information and to
project a distinctive social identity.Comment: Supporting Information is available here:
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0019009.s00
Origin and Evolution of Saturn's Ring System
The origin and long-term evolution of Saturn's rings is still an unsolved
problem in modern planetary science. In this chapter we review the current
state of our knowledge on this long-standing question for the main rings (A,
Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During
the Voyager era, models of evolutionary processes affecting the rings on long
time scales (erosion, viscous spreading, accretion, ballistic transport, etc.)
had suggested that Saturn's rings are not older than 100 My. In addition,
Saturn's large system of diffuse rings has been thought to be the result of
material loss from one or more of Saturn's satellites. In the Cassini era, high
spatial and spectral resolution data have allowed progress to be made on some
of these questions. Discoveries such as the ''propellers'' in the A ring, the
shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume
provide new constraints on evolutionary processes in Saturn's rings. At the
same time, advances in numerical simulations over the last 20 years have opened
the way to realistic models of the rings's fine scale structure, and progress
in our understanding of the formation of the Solar System provides a
better-defined historical context in which to understand ring formation. All
these elements have important implications for the origin and long-term
evolution of Saturn's rings. They strengthen the idea that Saturn's rings are
very dynamical and rapidly evolving, while new arguments suggest that the rings
could be older than previously believed, provided that they are regularly
renewed. Key evolutionary processes, timescales and possible scenarios for the
rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from
Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009)
537-57
- …
